629 research outputs found

    Harnessing resilience: biased voltage overscaling for probabilistic signal processing

    Get PDF
    A central component of modern computing is the idea that computation requires determinism. Contrary to this belief, the primary contribution of this work shows that useful computation can be accomplished in an error-prone fashion. Focusing on low-power computing and the increasing push toward energy conservation, the work seeks to sacrifice accuracy in exchange for energy savings. Probabilistic computing forms the basis for this error-prone computation by diverging from the requirement of determinism and allowing for randomness within computing. Implemented as probabilistic CMOS (PCMOS), the approach realizes enormous energy sav- ings in applications that require probability at an algorithmic level. Extending probabilistic computing to applications that are inherently deterministic, the biased voltage overscaling (BIVOS) technique presented here constrains the randomness introduced through PCMOS. Doing so, BIVOS is able to limit the magnitude of any resulting deviations and realizes energy savings with minimal impact to application quality. Implemented for a ripple-carry adder, array multiplier, and finite-impulse-response (FIR) filter; a BIVOS solution substantially reduces energy consumption and does so with im- proved error rates compared to an energy equivalent reduced-precision solution. When applied to H.264 video decoding, a BIVOS solution is able to achieve a 33.9% reduction in energy consumption while maintaining a peak-signal-to-noise ratio of 35.0dB (compared to 14.3dB for a comparable reduced-precision solution). While the work presented here focuses on a specific technology, the technique realized through BIVOS has far broader implications. It is the departure from the conventional mindset that useful computation requires determinism that represents the primary innovation of this work. With applicability to emerging and yet to be discovered technologies, BIVOS has the potential to contribute to computing in a variety of fashions.PhDCommittee Chair: Anderson, David; Committee Member: Conte, Thomas; Committee Member: Ferri, Bonnie; Committee Member: Hasler, Paul; Committee Member: Mooney, Vincen

    Understanding and Countermeasures against IoT Physical Side Channel Leakage

    Get PDF
    With the proliferation of cheap bulk SSD storage and better batteries in the last few years we are experiencing an explosion in the number of Internet of Things (IoT) devices flooding the market, smartphone connected point-of-sale devices (e.g. Square), home monitoring devices (e.g. NEST), fitness monitoring devices (e.g. Fitbit), and smart-watches. With new IoT devices come new security threats that have yet to be adequately evaluated. We propose uLeech, a new embedded trusted platform module for next-generation power scavenging devices. Such power scavenging devices are already widely deployed. For instance, the Square point-of-sale reader uses the microphone/speaker interface of a smartphone for communications and as a power supply. Such devices are being used as trusted devices in security-critical applications, without having been adequately evaluated. uLeech can securely store keys and provide cryptographic services to any connected smartphone. Our design also facilitates physical side-channel security analysis by providing interfaces to facilitate the acquisition of power traces and clock manipulation attacks. Thus uLeech empowers security researchers to analyze leakage in next- generation embedded and IoT devices and to evaluate countermeasures before deployment. Even the most secure systems reveal their secrets through secret-dependent computation. Secret- dependent computation is detectable by monitoring a system’s time, power, or outputs. Common defenses to side-channel emanations include adding noise to the channel or making algorithmic changes to mitigate specific side-channels. Unfortunately, existing solutions are not automatic, not comprehensive, or not practical. We propose an isolation-based approach for eliminating power and timing side-channels that is automatic, comprehensive, and practical. Our approach eliminates side-channels by leveraging integrated decoupling capacitors to electrically isolate trusted computation from the adversary. Software has the ability to request a fixed- power/time quantum of isolated computation. By discretizing power and time, our approach controls the granularity of side-channel leakage; the only burden on programmers is to ensure that all secret-dependent execution differences converge within a power/time quantum. We design and implement three approaches to power/time-based quantization and isolation: a wholly-digital version, a hybrid version that uses capacitors for time tracking, and a full- custom version. We evaluate the overheads of our proposed controllers with respect to software implementations of AES and RSA running on an ARM- based microcontroller and hardware implementations AES and RSA using a 22nm process technology. We also validate the effectiveness and real-world efficiency of our approach by building a prototype consisting of an ARM microcontroller, an FPGA, and discrete circuit components. Lastly, we examine the root cause of Electromagnetic (EM) side-channel attacks on Integrated Circuits (ICs) to augment the Quantized Computing design to mitigate EM leakage. By leveraging the isolation nature of our Quantized Computing design, we can effectively reduce the length and power of the unintended EM antennas created by the wire layers in an IC

    Ultra-low noise, high-frame rate readout design for a 3D-stacked CMOS image sensor

    Get PDF
    Due to the switch from CCD to CMOS technology, CMOS based image sensors have become smaller, cheaper, faster, and have recently outclassed CCDs in terms of image quality. Apart from the extensive set of applications requiring image sensors, the next technological breakthrough in imaging would be to consolidate and completely shift the conventional CMOS image sensor technology to the 3D-stacked technology. Stacking is recent and an innovative technology in the imaging field, allowing multiple silicon tiers with different functions to be stacked on top of each other. The technology allows for an extreme parallelism of the pixel readout circuitry. Furthermore, the readout is placed underneath the pixel array on a 3D-stacked image sensor, and the parallelism of the readout can remain constant at any spatial resolution of the sensors, allowing extreme low noise and a high-frame rate (design) at virtually any sensor array resolution. The objective of this work is the design of ultra-low noise readout circuits meant for 3D-stacked image sensors, structured with parallel readout circuitries. The readout circuit’s key requirements are low noise, speed, low-area (for higher parallelism), and low power. A CMOS imaging review is presented through a short historical background, followed by the description of the motivation, the research goals, and the work contributions. The fundamentals of CMOS image sensors are addressed, as a part of highlighting the typical image sensor features, the essential building blocks, types of operation, as well as their physical characteristics and their evaluation metrics. Following up on this, the document pays attention to the readout circuit’s noise theory and the column converters theory, to identify possible pitfalls to obtain sub-electron noise imagers. Lastly, the fabricated test CIS device performances are reported along with conjectures and conclusions, ending this thesis with the 3D-stacked subject issues and the future work. A part of the developed research work is located in the Appendices.Devido à mudança da tecnologia CCD para CMOS, os sensores de imagem em CMOS tornam se mais pequenos, mais baratos, mais rápidos, e mais recentemente, ultrapassaram os sensores CCD no que respeita à qualidade de imagem. Para além do vasto conjunto de aplicações que requerem sensores de imagem, o próximo salto tecnológico no ramo dos sensores de imagem é o de mudar completamente da tecnologia de sensores de imagem CMOS convencional para a tecnologia “3D-stacked”. O empilhamento de chips é relativamente recente e é uma tecnologia inovadora no campo dos sensores de imagem, permitindo vários planos de silício com diferentes funções poderem ser empilhados uns sobre os outros. Esta tecnologia permite portanto, um paralelismo extremo na leitura dos sinais vindos da matriz de píxeis. Além disso, num sensor de imagem de planos de silício empilhados, os circuitos de leitura estão posicionados debaixo da matriz de píxeis, sendo que dessa forma, o paralelismo pode manter-se constante para qualquer resolução espacial, permitindo assim atingir um extremo baixo ruído e um alto debito de imagens, virtualmente para qualquer resolução desejada. O objetivo deste trabalho é o de desenhar circuitos de leitura de coluna de muito baixo ruído, planeados para serem empregues em sensores de imagem “3D-stacked” com estruturas altamente paralelizadas. Os requisitos chave para os circuitos de leitura são de baixo ruído, rapidez e pouca área utilizada, de forma a obter-se o melhor rácio. Uma breve revisão histórica dos sensores de imagem CMOS é apresentada, seguida da motivação, dos objetivos e das contribuições feitas. Os fundamentos dos sensores de imagem CMOS são também abordados para expor as suas características, os blocos essenciais, os tipos de operação, assim como as suas características físicas e suas métricas de avaliação. No seguimento disto, especial atenção é dada à teoria subjacente ao ruído inerente dos circuitos de leitura e dos conversores de coluna, servindo para identificar os possíveis aspetos que dificultem atingir a tão desejada performance de muito baixo ruído. Por fim, os resultados experimentais do sensor desenvolvido são apresentados junto com possíveis conjeturas e respetivas conclusões, terminando o documento com o assunto de empilhamento vertical de camadas de silício, junto com o possível trabalho futuro

    The Telecommunications and Data Acquisition Report

    Get PDF
    This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported

    Plasmonic color filter array, high performance analog to digital converter architectures and novel circuit techniques

    Get PDF
    Part I: Plasmonic color filters can be manufactured at lower cost since they can be fabricated in single lithographic process step as compared to Fabry-Perot based filters. In addition, they have narrow passband making resolving sharp features in sample spectrum possible. Due to these benefits, in this thesis, Plasmonic color filters are investigated as alternative to conventional color filters and their feasibility for spectroscopy demonstrated through reconstruction of 6 sample spectra by using a set of 20 color filters. The error in reconstructed sample spectra is less than 0.137 root mean squared error across all samples. Part II: A novel 12-bit pipelined successive approximation analog to digital converter is investigated for high speed data conversion. The design was implemented in TSMC 65nm process to demonstrate the feasibility of the architecture. Furthermore, a high dynamic range audio delta sigma modulator using pseudo-pseudo differential topology was investigated and feasibility simulated using TSMC 65nm process. In addition, various novel systems and circuit techniques including efficient calibration of feedback digital to analog converters, new boosted switch and push-pull source follower circuits were investigated to improve upon existing circuit topologies

    Continuous-Time and Companding Digital Signal Processors Using Adaptivity and Asynchronous Techniques

    Get PDF
    The fully synchronous approach has been the norm for digital signal processors (DSPs) for many decades. Due to its simplicity, the classical DSP structure has been used in many applications. However, due to its rigid discrete-time operation, a classical DSP has limited efficiency or inadequate resolution for some emerging applications, such as processing of multimedia and biological signals. This thesis proposes fundamentally new approaches to designing DSPs, which are different from the classical scheme. The defining characteristic of all new DSPs examined in this thesis is the notion of "adaptivity" or "adaptability." Adaptive DSPs dynamically change their behavior to adjust to some property of their input stream, for example the rate of change of the input. This thesis presents both enhancements to existing adaptive DSPs, as well as new adaptive DSPs. The main class of DSPs that are examined throughout the thesis are continuous-time (CT) DSPs. CT DSPs are clock-less and event-driven; they naturally adapt their activity and power consumption to the rate of their inputs. The absence of a clock also provides a complete avoidance of aliasing in the frequency domain, hence improved signal fidelity. The core of this thesis deals with the complete and systematic design of a truly general-purpose CT DSP. A scalable design methodology for CT DSPs is presented. This leads to the main contribution of this thesis, namely a new CT DSP chip. This chip is the first general-purpose CT DSP chip, able to process many different classes of CT and synchronous signals. The chip has the property of handling various types of signals, i.e. various different digital modulations, both synchronous and asynchronous, without requiring any reconfiguration; such property is presented for the first time CT DSPs and is impossible for classical DSPs. As opposed to previous CT DSPs, which were limited to using only one type of digital format, and whose design was hard to scale for different bandwidths and bit-widths, this chip has a formal, robust and scalable design, due to the systematic usage of asynchronous design techniques. The second contribution of this thesis is a complete methodology to design adaptive delay lines. In particular, it is shown how to make the granularity, i.e. the number of stages, adaptive in a real-time delay line. Adaptive granularity brings about a significant improvement in the line's power consumption, up to 70% as reported by simulations on two design examples. This enhancement can have a direct large power impact on any CT DSP, since a delay line consumes the majority of a CT DSP's power. The robust methodology presented in this thesis allows safe dynamic reconfiguration of the line's granularity, on-the-fly and according to the input traffic. As a final contribution, the thesis also examines two additional DSPs: one operating the CT domain and one using the companding technique. The former operates only on level-crossing samples; the proposed methodology shows a potential for high-quality outputs by using a complex interpolation function. Finally, a companding DSP is presented for MPEG audio. Companding DSPs adapt their dynamic range to the amplitude of their input; the resulting can offer high-quality outputs even for small inputs. By applying companding to MPEG DSPs, it is shown how the DSP distortion can be made almost inaudible, without requiring complex arithmetic hardware

    Solid-state imaging : a critique of the CMOS sensor

    Get PDF

    Micromachined capacitive pressure sensor with signal conditioning electronics

    Get PDF

    A jittered-sampling correction technique for ADCs

    Get PDF
    In Analogue to Digital Converters (ADCs) jittered sampling raises the noise floor; this leads to a decrease in its Signal to Noise ratio (SNR) and its effective number of bits (ENOB). This research studies a technique that compensate for the effects of sampling with a jittered clock. A thorough understanding of sampling in various data converters is complied
    • …
    corecore