219 research outputs found

    Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information

    Get PDF
    Complete tumor removal during breast-conserving surgery remains challenging due to the lack of optimal intraoperative margin assessment techniques. Here, we use hyperspectral imaging for tumor detection in fresh breast tissue. We evaluated different wavelength ranges and two classification algorithms; a pixel-wise classification algorithm and a convolutional neural network that combines spectral and spatial information. The highest classification performance was obtained using the full wavelength range (450-1650nm). Adding spatial information mainly improved the differentiation of tissue classes within the malignant and healthy classes. High sensitivity and specificity were accomplished, which offers potential for hyperspectral imaging as a margin assessment technique to improve surgical outcome. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Framework for Hyperspectral Image Processing and Quantification for Cancer Detection During Animal Tumor Surgery

    Get PDF
    Hyperspectral imaging (HSI) is an imaging modality that holds strong potential for rapid cancer detection during image-guided surgery. But the data from HSI often needs to be processed appropriately in order to extract the maximum useful information that differentiates cancer from normal tissue. We proposed a framework for hyperspectral image processing and quantification, which includes a set of steps including image preprocessing, glare removal, feature extraction, and ultimately image classification. The framework has been tested on images from mice with head and neck cancer, using spectra from 450- to 900-nm wavelength. The image analysis computed Fourier coefficients, normalized reflectance, mean, and spectral derivatives for improved accuracy. The experimental results demonstrated the feasibility of the hyperspectral image processing and quantification framework for cancer detection during animal tumor surgery, in a challenging setting where sensitivity can be low due to a modest number of features present, but potential for fast image classification can be high. This HSI approach may have potential application in tumor margin assessment during image-guided surgery, where speed of assessment may be the dominant factor

    A comparison of spectroscopy and imaging techniques utilizing spectrally resolved diffusely reflected light for intraoperative margin assessment in breast-conserving surgery: a systematic review and meta-analysis

    Get PDF
    Up to 19% of patients require re-excision surgery due to positive margins in breast-conserving surgery (BCS). Intraoperative margin assessment tools (IMAs) that incorporate tissue optical measurements could help reduce re-excision rates. This review focuses on methods that use and assess spectrally resolved diffusely reflected light for breast cancer detection in the intraoperative setting. Following PROSPERO registration (CRD42022356216), an electronic search was performed. The modalities searched for were diffuse reflectance spectroscopy (DRS), multispectral imaging (MSI), hyperspectral imaging (HSI), and spatial frequency domain imaging (SFDI). The inclusion criteria encompassed studies of human in vivo or ex vivo breast tissues, which presented data on accuracy. The exclusion criteria were contrast use, frozen samples, and other imaging adjuncts. 19 studies were selected following PRISMA guidelines. Studies were divided into point-based (spectroscopy) or whole field-of-view (imaging) techniques. A fixed-or random-effects model analysis generated pooled sensitivity/specificity for the different modalities, following heterogeneity calculations using the Q statistic. Overall, imaging-based techniques had better pooled sensitivity/specificity (0.90 (CI 0.76-1.03)/0.92 (CI 0.78-1.06)) compared with probe-based techniques (0.84 (CI 0.78-0.89)/0.85 (CI 0.79-0.91)). The use of spectrally resolved diffusely reflected light is a rapid, non-contact technique that confers accuracy in discriminating between normal and malignant breast tissue, and it constitutes a potential IMA tool

    Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment

    Get PDF
    There continues to be a significant clinical need for rapid and reliable intraoperative margin assessment during cancer surgery. Here we describe a portable, quantitative, optical fiber probe-based, spectroscopic tissue scanner designed for intraoperative diagnostic imaging of surgical margins, which we tested in a proof of concept study in human tissue for breast cancer diagnosis. The tissue scanner combines both diffuse reflectance spectroscopy (DRS) and intrinsic fluorescence spectroscopy (IFS), and has hyperspectral imaging capability, acquiring full DRS and IFS spectra for each scanned image pixel. Modeling of the DRS and IFS spectra yields quantitative parameters that reflect the metabolic, biochemical and morphological state of tissue, which are translated into disease diagnosis. The tissue scanner has high spatial resolution (0.25 mm) over a wide field of view (10 cm×10 cm), and both high spectral resolution (2 nm) and high spectral contrast, readily distinguishing tissues with widely varying optical properties (bone, skeletal muscle, fat and connective tissue). Tissue-simulating phantom experiments confirm that the tissue scanner can quantitatively measure spectral parameters, such as hemoglobin concentration, in a physiologically relevant range with a high degree of accuracy (<5% error). Finally, studies using human breast tissues showed that the tissue scanner can detect small foci of breast cancer in a background of normal breast tissue. This tissue scanner is simpler in design, images a larger field of view at higher resolution and provides a more physically meaningful tissue diagnosis than other spectroscopic imaging systems currently reported in literatures. We believe this spectroscopic tissue scanner can provide real-time, comprehensive diagnostic imaging of surgical margins in excised tissues, overcoming the sampling limitation in current histopathology margin assessment. As such it is a significant step in the development of a platform technology for intraoperative management of cancer, a clinical problem that has been inadequately addressed to date.Case Comprehensive Cancer Center. Tissue Procurement, Histology and Immunohistochemistry Core Facility (P30 CA43703)National Cancer Institute (U.S.) (R01-CA140288)National Cancer Institute (U.S.) (R01-CA97966)National Center for Research Resources (U.S.) (S10-RR031845)National Center for Research Resources (U.S.) (P41-RR02594

    Surgical spectral imaging

    Get PDF
    Recent technological developments have resulted in the availability of miniaturised spectral imaging sensors capable of operating in the multi- (MSI) and hyperspectral imaging (HSI) regimes. Simultaneous advances in image-processing techniques and artificial intelligence (AI), especially in machine learning and deep learning, have made these data-rich modalities highly attractive as a means of extracting biological information non-destructively. Surgery in particular is poised to benefit from this, as spectrally-resolved tissue optical properties can offer enhanced contrast as well as diagnostic and guidance information during interventions. This is particularly relevant for procedures where inherent contrast is low under standard white light visualisation. This review summarises recent work in surgical spectral imaging (SSI) techniques, taken from Pubmed, Google Scholar and arXiv searches spanning the period 2013–2019. New hardware, optimised for use in both open and minimally-invasive surgery (MIS), is described, and recent commercial activity is summarised. Computational approaches to extract spectral information from conventional colour images are reviewed, as tip-mounted cameras become more commonplace in MIS. Model-based and machine learning methods of data analysis are discussed in addition to simulation, phantom and clinical validation experiments. A wide variety of surgical pilot studies are reported but it is apparent that further work is needed to quantify the clinical value of MSI/HSI. The current trend toward data-driven analysis emphasises the importance of widely-available, standardised spectral imaging datasets, which will aid understanding of variability across organs and patients, and drive clinical translation

    Enhancing intraoperative tumor delineation with multispectral short-wave infrared fluorescence imaging and machine learning

    Get PDF
    SIGNIFICANCE: Fluorescence-guided surgery (FGS) provides specific real-time visualization of tumors, but intensity-based measurement of fluorescence is prone to errors. Multispectral imaging (MSI) in the short-wave infrared (SWIR) has the potential to improve tumor delineation by enabling machine-learning classification of pixels based on their spectral characteristics. AIM: Determine whether MSI can be applied to FGS and combined with machine learning to provide a robust method for tumor visualization. APPROACH: A multispectral SWIR fluorescence imaging device capable of collecting data from six spectral filters was constructed and deployed on neuroblastoma (NB) subcutaneous xenografts ( n = 6 ) after the injection of a NB-specific NIR-I fluorescent probe (Dinutuximab-IRDye800). We constructed image cubes representing fluorescence collected from ∼ 850 to 1450 nm and compared the performance of seven learning-based methods for pixel-by-pixel classification, including linear discriminant analysis, k -nearest neighbor classification, and a neural network. RESULTS: The spectra of tumor and non-tumor tissue were subtly different and conserved between individuals. In classification, a combine principal component analysis and k -nearest-neighbor approach with area under curve normalization performed best, achieving 97.5% per-pixel classification accuracy (97.1%, 93.5%, and 99.2% for tumor, non-tumor tissue and background, respectively). CONCLUSIONS: The development of dozens of new imaging agents provides a timely opportunity for multispectral SWIR imaging to revolutionize next-generation FGS

    Optical and hyperspectral image analysis for image-guided surgery

    Get PDF

    Optical and hyperspectral image analysis for image-guided surgery

    Get PDF
    • …
    corecore