571 research outputs found

    Nuclear Physics for Cultural Heritage

    Get PDF
    Nuclear physics applications in medicine and energy are well known and widely reported. Less well known are the many important nuclear and related techniques used for the study, characterization, assessment and preservation of cultural heritage. There has been enormous progress in this field in recent years and the current review aims to provide the public with a popular and accessible account of this work. The Nuclear Physics Division of the EPS represents scientists from all branches of nuclear physics across Europe. One of its aims is the dissemination of knowledge about nuclear physics and its applications. This review is led by Division board member Anna Macková, Head of the Tandetron Laboratory at the Nuclear Physics Institute of the Czech Academy of Sciences, and the review committee includes four other members of the nuclear physics board interested in this area: Faiçal Azaiez, Johan Nyberg, Eli Piasetzky and Douglas MacGregor. To create a truly authoritative account, the Scientific Editors have invited contributions from leading experts across Europe, and this publication is the combined result of their work. The review is extensively illustrated with important discoveries and examples from archaeology, pre-history, history, geography, culture, religion and curation, which underline the breadth and importance of this field. The large number of groups and laboratories working in the study and preservation of cultural heritage across Europe indicate the enormous effort and importance attached by society to this activity

    New Applications of the Nuclear Microprobe for Biological Samples

    Get PDF
    The continuing development of the Nuclear Microprobe (NMP) has opened up new fields of applications in biology and medicine. Quantitative multielemental analysis in small sections of samples can be performed routinely. The use of techniques such as scanning transmission ion microscopy makes imaging as well as mass normalization possible at submicron resolution. Recent medical applications include studies on thin cryosections prepared from autopsies and biopsies, as well as single cells grown directly on the backing foil used in the NMP analyses. The purpose of the single cell analysis is often pharmacological, e.g., testing of new drugs, their uptake and distribution. New applications, for instance, in food chemistry, ecology and evolutionary genetics, are also taking advantage of the high analytical sensitivity of the NMP in combination with its imaging capability

    Data Acquisition and Presentation in Scanning Nuclear Microprobe Analysis

    Get PDF
    The data acquisition is a very important part of the scanning nuclear microprobe instrument. To make full use of the potential of the technique an adequate system for acquiring, storing, processing and presenting the data is a prerequisite. Various principles applied are presented including the list mode approach, which facilitates flexible off-line data processing. As in the case of the electron probe the beam-induced effects in the sample may be substantial and the list mode acquisition can then also be used to monitor and correct for any such effects. A comprehensive system for scanning nuclear microprobe control and data acquisition, based on a combination of a VMEbus computer system and a ÎĽVax-II computer, is described in some detail

    The Principles of Proton Probe Microanalysis in Biology

    Get PDF
    The proton microprobe, more correctly described as an ion microprobe which operates at MeV energies, complements its parent instrument the electron microprobe. This paper compares the basic principles and performance of the two instruments and relates the evolution of biological analysis on such ion microprobes to that on electron microprobes, covering the development of sample handling techniques and of data handling techniques and comparing beam damage studies. The paper describes the variety of techniques available to the ion microprobe - the initial techniques of Energy Dispersive X-ray analysis, Rutherford Back Scattering and Nuclear Reaction Analysis and the rapid evolution of new techniques, from Scanning Transmission Ion Microscopy to 3-dimensional tomography. All of these new techniques required the advanced computerised data handling which has been a feature of ion microprobe development

    Proton Microprobe Analysis in Biology

    Get PDF
    This paper is intended as an introduction to the field of proton microprobe analysis with special emphasis on applications in biological sciences. It is mainly intended for users of electron microscopes equipped with microprobes or other analytical equipment. The basic principles of Particle Induced X-ray Emission analysis are discussed as well as the instrumental requirements for the proton microprobe. The analytical characteristics including quantification procedures are compared with those of the electron microprobe and a review is given of various analytical applications of the proton microprobe within biology and medicine

    Focussed MeV-Ion Micro- and Nano-Beams in the Life Sciences: Selected Applications

    Get PDF
    This work presents the development of a sub-micron nuclear microprobe for applications in the life sciences. It includes quantitative trace element analysis with sub-micron spatial resolution, 2D- and 3D-microscopy of density distributions and the targeted irradiation of living cells with counted single ions. The analytical methods base on particle induced X-ray emission spectrometry (PIXE), Rutherford backscattering spectrometry (RBS), scanning transmission ion microscopy (STIM) and STIM-tomography. The specific development of the existing nuclear microprobe LIPSION led to an improved performance of the capabilities for trace element analysis. For sub-micron analysis the spatial resolution could be improved to 300 nm at a sensitivity of about 1 µg/g for metal ions in biological matrices; for a resolution of 1 µm the sensitivity was improved to 200 ng/g (3 µmol/l). This habilitation thesis comprises a short general introduction including the motivation to utilize focussed high energy ion beams, an overview on the applications and actual research fields. The introduction is followed by the basic principles of the equipments and analytical methods. An estimation of the limits of resolution for element analytical and single ion techniques is given for the Leipzig system. Thereafter, selected studies from different research areas are presented. The first presented application is a study from environmental air pollution research. It is demonstrated that the microscopic elemental analysis of single aerosol particles can be used to assess the contributions from different sources. A further example is the analysis of the distribution of nanoparticles in skin cross-sections for a risk assessment of the applications of nanosized physical UV-filters in cosmetic products. The risk assessment is followed by the micro-analysis of trace elements, especially of bound metal ions, in brain sections on the cellular and sub-cellular level. After this the application of focussed MeV ion beams in low dose radiobiological research is presented. Finally, the analysis of 3D-density distributions by proton micro-tomography is demonstrated. A summary concludes on the applications and gives an outlook to further applications and methodological developments. The appendix comprises the relevant publications of the author.Die vorliegende Arbeit etabliert für Anwendungen in den Lebenswissenschaften den Einsatz hochfokussierter MeV-Ionenstrahlen für nuklear-mikroskopische Methoden der quantitativen Spurenelementanalyse, der 2D- und 3D-Dichtemikroskopie sowie für die gezielte Bestrahlung einzelner lebender Zellen für radiobiologische Experimente. Zur Anwendung kamen die Methoden ortsaufgelöste Protonen induzierte Röntgenfluoreszenzanalyse (particle induced X-ray emission - PIXE), Spektrometrie rückgestreuter Ionen (Rutherford backscattering spectrometry - RBS) und Rastertransmissionsionenmikroskopie (scanning transmission ion microscopy - STIM). Durch eine gezielte Weiterentwicklung des bestehenden Ionenstrahlmikroskops, der Hochenergie Ionennanosonde LIPSION, konnte die Ortsauflösung für Spurenelementanalyse auf unter 300 nm verbessert werden, beziehungsweise die Sensitivität für Metallionen in biologischen Proben auf unter 200 ng/g (3 µmol/l) bei einer Ortsauflösung von 1 µm verbessert werden. Die Habilitationsschrift umfasst eine kurze allgemeine Einleitung einschließlich der Motivation für den Einsatz fokussierter MeV-Ionenstrahlen sowie einen Überblick über die Anwendungsgebiete und aktuellen Forschungsschwerpunkte. Danach werden kurz die Grundlagen der Technik und Methoden vorgestellt, gefolgt von einer Abschätzung der A\u7fuflösungsgrenzen für Elementanalysen und Einzelionentechniken. Danach werden ausgewählte Anwendungen aus verschiedenen Forschungsgebieten vorgestellt. Das erstes Beispiel ist aus der Umweltforschung. Es wird dargestellt, wie mittels ortsaufgelöster Elementspektroskopie eine Abschätzung der Feinstaubbelastung nach Beiträgen einzelner Verursacherquellen erfolgen kann. Dann folgt als Beispiel eine ortsaufgelöste Analyse der Verteilung von Nanopartikeln aus Sonnencremes in Hautquerschnitten zur Risikoabschätzung der Anwendungen von Nanotechnologie in kosmetischen Produkten. Desweiteren werden Studien der Spurenelementverteilung, speziell der von gebundenen Metallionen, in Hirnschnitten auf zellulärer und subzellulärer Ebene erläutert. Das anschließende Beispiel erläutert die Anwendung niedriger Energiedosen in der Radiobiologie anhand des Beschusses einzelner lebender Zellen mit abgezählten einzelnen Ionen. Als letztes Beispiel wird die Anwendung hochfokussierter Ionenstrahlen für die Mikrotomographie gezeigt. Abschließend folgt eine zusammenfassende Bewertung der vorgestellten Anwendungen mit einem Ausblick auf weitere Anwendungen und methodische Entwicklungen. Der Arbeit sind die relevanten Veröffentlichungen mit Beteiligung des Autors als Anhang beigefügt

    Ionoluminescence: A New Tool for Nuclear Microprobes in Geology

    Get PDF
    When an ion beam in the energy range of a few MeV/amu impacts on a mineral, visible light can often be observed. This light, induced by energetic ions, is termed ionoluminescence (IL). The intensity and wavelength of the ionoluminescent light provide information concerning the nature of luminescence centers, such as trace substituents and structural defects, found in the mineral. This makes IL a useful complement to other methods of ion beam analysis (IBA), such as particle induced X-ray emission (PIXE) and Rutherford backscattering (RBS), in characterizing geological samples. In the present study, a proton or alpha particle beam was used for the IL excitation and IBA with a nuclear microprobe. The results obtained with IL were compared with those of cathodoluminescence (CL) and photoluminescence (PL)

    Distribution of Metals in the Termite Tumulitermes tumuli (Froggatt): Two Types of Malpighian Tubule Concretion Host Zn and Ca Mutually Exclusively

    Get PDF
    The aim of this study was to determine specific distribution of metals in the termite Tumulitermes tumuli (Froggatt) and identify specific organs within the termite that host elevated metals and therefore play an important role in the regulation and transfer of these back into the environment. Like other insects, termites bio-accumulate essential metals to reinforce cuticular structures and utilize storage detoxification for other metals including Ca, P, Mg and K. Previously, Mn and Zn have been found concentrated in mandible tips and are associated with increased hardness whereas Ca, P, Mg and K are accumulated in Malpighian tubules. Using high resolution Particle Induced X-Ray Emission (PIXE) mapping of whole termites and Scanning Electron Microscope (SEM) Energy Dispersive X-ray (EDX) spot analysis, localised accumulations of metals in the termite T. tumuli were identified. Tumulitermes tumuli was found to have proportionally high Mn concentrations in mandible tips. Malpighian tubules had significant enrichment of Zn (1.6%), Mg (4.9%), P (6.8%), Ca (2.7%) and K (2.4%). Synchrotron scanning X-ray Fluorescence Microprobe (XFM) mapping demonstrated two different concretion types defined by the mutually exclusive presence of Ca and Zn. In-situ SEM EDX realisation of these concretions is problematic due to the excitation volume caused by operating conditions required to detect minor amounts of Zn in the presence of significant amounts of Na. For this reason, previous researchers have not demonstrated this surprising finding

    Micro-PIXE (Particle-Induced X-Ray Emission Analysis) Applications in Minerals Research

    Get PDF
    The versatility of the PIXE method with microbeams of protons as a non-destructive, in-situ probe for trace element analysis in the geosciences has been demonstrated in an ever increasing number of cases. While in most applications the method can be considered as derivative or as an extension of electron microprobe methodology, features unique to the proton microprobe enable new approaches to hitherto intractable problems of analysis. An appropriate niche has been established in igneous mineralogy and petrology, with important implications both in the basic geosciences as well as mineral industry applications, particularly in the diamond exploration industry. This paper reviews recent advances and discusses the advantages and limitations of current micro-PIXE applications in the geosciences in view of other competing and complimentary methods

    Plagioclase Studies by Ionoluminescence (IL) and Particle-Induced X-Ray Emission (PIXE) Employing a Nuclear Microprobe

    Get PDF
    When an ion beam in the energy range of a few MeV/amu impacts on a mineral, visible light can often be observed. This light, termed ionoluminescence (IL), has been shown to be a very useful tool for investigating geological specimens when it is combined in a nuclear microprobe with a well-established, quantitative, trace element method such as Particle Induced X-ray Emission (PIXE). When plagioclases from the Skaergaard intrusion, East Greenland, were irradiated with protons, bluish luminescence was observed. Spectroscopic IL studies were undertaken with 1.5 and 2.5 MeV protons with power densities ranging from about 6 to 160 W/cm2. In the IL spectra of the plagioclase specimens, four emission bands were observed, peaking at about 4200, 4600, 5500, and 7500 A, respectively. The relative intensities of the emission bands in the short wavelength region were rather constant for all samples, except for the long wavelength band, activated by Fe3+ and peaking at 7500 A, which varied considerably. Variation in the oxidation states of the samples was investigated by measuring the Fe3+ intensity from IL normalized to the total iron concentration as obtained by PIXE. The relationship between the Fe3+-activated peak area normalized to the total iron content and the expected relative oxidation state was found to be relevant
    • …
    corecore