6,749 research outputs found

    Towards Self-evolving Context-aware Services

    Get PDF
    The introduction of new communication infrastructures such as Beyond 3rd Generation (B3G) and the widespread usage of small computing devices are rapidly changing the way we use and interact with technology to perform everyday tasks. Ubiquitous networking empowered by B3G networking makes it possible for mobile users to access networked software services across continuously changing heterogeneous infrastructures by resource-constrained devices. Heterogeneity and devices' limitedness, create serious problems for the development and dynamic deployment of mobile applications that are able to run properly on the execution context and consume services matching with the users' expectations. Furthermore, the everchanging B3G environment calls for applications that self-evolve according to context changes. Out of these problems, self-evolving adaptable applications are increasingly emerging in the software community. In this paper we describe how CHAMELEON, a declarative framework for tailoring adaptable applications, is being used for tackling adaptation and self-evolution within the IST PLASTIC project

    Mobile Computing in Physics Analysis - An Indicator for eScience

    Full text link
    This paper presents the design and implementation of a Grid-enabled physics analysis environment for handheld and other resource-limited computing devices as one example of the use of mobile devices in eScience. Handheld devices offer great potential because they provide ubiquitous access to data and round-the-clock connectivity over wireless links. Our solution aims to provide users of handheld devices the capability to launch heavy computational tasks on computational and data Grids, monitor the jobs status during execution, and retrieve results after job completion. Users carry their jobs on their handheld devices in the form of executables (and associated libraries). Users can transparently view the status of their jobs and get back their outputs without having to know where they are being executed. In this way, our system is able to act as a high-throughput computing environment where devices ranging from powerful desktop machines to small handhelds can employ the power of the Grid. The results shown in this paper are readily applicable to the wider eScience community.Comment: 8 pages, 7 figures. Presented at the 3rd Int Conf on Mobile Computing & Ubiquitous Networking (ICMU06. London October 200

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    Adapting mobile systems using logical mobility primitives

    Get PDF
    Mobile computing devices, such as personal digital assistants and mobile phones, are becoming increasingly popular, smaller, more capable and even fashionable personal items. Combined with the recent advent of wireless networking techniques, users are equipped with mobile devices of significant computational abilities, which are able to wirelessly access information by dynamically connecting to many different networks. Despite the ubiquity of mobile devices, mobile systems are built using monolithic architectures, use a small set of predefined interaction paradigms and do not exploit or adapt to the dynamicity of their local or remote context. Applications deployed on mobile devices face considerable challenges posed by their changing surroundings. One of the main peculiarities of mobile devices is heterogeneity, which may occur in software, hardware and network protocols. Mobile systems may carry a large number of different applications, use different operating systems and middleware and, often, have more than one network interface. A further challenge is their considerable variation in the computational resources available, such as battery power, CPU speed, network bandwidth and volatile and persistent memory. Moreover, mobile computing systems are highly dynamic systems, in terms of their surroundings, implying that the requirements for applications deployed on a mobile device are a moving target. Changes in the requirements (such as integration with a new service) may require changes to the application. Consequently, these changes may mean that the application behaviour needs to adapt. This thesis argues that the potential of the ubiquity of mobile devices cannot be realised using static and monolithic architectures, as mobile systems need to be able to adapt to accommodate changes to their environment. It investigates the use of three technologies to offer adaptation to mobile devices: Logical mobility techniques, component systems and middleware technologies. More specifically, this thesis presents the SATIN (System Adaptation Targeting Integrated Networks) component metamodel, a lightweight local component metamodel that offers the flexible use of logical mobility primitives. The metamodel is instantiated to build the SATIN middleware system, a component-based mobile computing middleware that uses the mobility primitives exported by the metamodel to reconfigure itself and applications running on top of it. The suitability of SATIN for the creation of adaptable mobile systems is demonstrated, by using it to implement and evaluate a number of applications showing different aspects of adaptation. Moreover, existing projects are reengineered to run as SATIN components, showing the flexibility of the approach and the advantages gained over the originals

    Adaptable data management for systems biology investigations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage.</p> <p>Results</p> <p>The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry). We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents.</p> <p>Conclusion</p> <p>Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community.</p

    A comparative analysis of adaptive middleware architectures based on computational reflection and aspect oriented programming to support mobile computing applications

    Get PDF
    Mobile computing applications are required to operate in environments in which the availability for resources and services may change significantly during system operation. As a result, mobile computing applications need to be capable of adapting to these changes to offer the best possible level of service to their users. However, traditional middleware is limited in its capability of adapting to environment changes and different users requirements. Computational Reflection and Aspect Oriented Programming paradigms have been used in the design and implementation of adaptive middleware architectures. In this paper, we propose two adaptive middleware architectures, one based on reflection and other based on aspects, which can be used to develop adaptive mobile applications. The reflection based architecture is compared to an aspect oriented based architecture from a quantitative perspective. The results suggest that middleware based on Aspect Oriented Programming can be used to build mobile adaptive applications that require less processor running time and more memory space than Computational Reflection while producing code that is easier to comprehend and modify.8th IFIP/IEEE International conference on Mobile and Wireless CommunicationRed de Universidades con Carreras en Informática (RedUNCI

    Adaptive service discovery on service-oriented and spontaneous sensor systems

    Get PDF
    Service-oriented architecture, Spontaneous networks, Self-organisation, Self-configuration, Sensor systems, Social patternsNatural and man-made disasters can significantly impact both people and environments. Enhanced effect can be achieved through dynamic networking of people, systems and procedures and seamless integration of them to fulfil mission objectives with service-oriented sensor systems. However, the benefits of integration of services will not be realised unless we have a dependable method to discover all required services in dynamic environments. In this paper, we propose an Adaptive and Efficient Peer-to-peer Search (AEPS) approach for dependable service integration on service-oriented architecture based on a number of social behaviour patterns. In the AEPS network, the networked nodes can autonomously support and co-operate with each other in a peer-to-peer (P2P) manner to quickly discover and self-configure any services available on the disaster area and deliver a real-time capability by self-organising themselves in spontaneous groups to provide higher flexibility and adaptability for disaster monitoring and relief

    Analysis of simulation environment

    Get PDF
    In this paper the requirements for an ALN simulation environment are analysed, as needed in the CATNETS Project. A number of grid and general purpose simulators are evaluated regarding the identified requirements for simulating economical resource allocation mechanisms in ALNs. Subsequently a suitable simulator is chosen for usage in the CATNETS project. --CATNETS simulator,requirements analysis,simulator selection
    corecore