1,726 research outputs found

    HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    Get PDF
    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements

    Trophic classification of selected Colorado lakes

    Get PDF
    Multispectral scanner data, acquired over several Colorado lakes using LANDSAT-1 and aircraft, were used in conjunction with contact-sensed water quality data to determine the feasibility of assessing lacustrine trophic levels. A trophic state index was developed using contact-sensed data for several trophic indicators. Relationships between the digitally processed multispectral scanner data, several trophic indicators, and the trophic index were examined using a supervised multispectral classification technique and regression techniques. Statistically significant correlations exist between spectral bands, several of the trophic indicators and the trophic state index. Color-coded photomaps were generated which depict the spectral aspects of trophic state

    Third Earth Resources Technology Satellite Symposium. Volume 3: Discipline summary reports

    Get PDF
    Presentations at the conference covered the following disciplines: (1) agriculture, forestry, and range resources; (2) land use and mapping; (3) mineral resources, geological structure, and landform surveys; (4) water resources; (5) marine resources; (6) environment surveys; and (7) interpretation techniques

    A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    Get PDF
    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD)

    Utility of remote sensing data in retrieval of water quality consituents concentrations in coastal water of New Jersey

    Get PDF
    Three important optical properties used for monitoring coastal water quality are the concentrations of chlorophyll (CHL), color dissolved organic matter (CDOM) and total suspended materials (TSM). Ocean color remote sensing, a technique to collect color data by detection of upward radiance from a distance (Bukata et al.,1995), provides a synoptic view for determining these concentrations from upwelling radiances. In the open ocean (Case-I), it is not difficult to derive empirical algorithms relating the received radiances to surface concentrations of water quality parameters. In coastal waters (Case-Il), there are serious unresolved problems in extracting chlorophyll concentration because of high concentration of suspended particles (Gordon and Morel, 1983). There are three basic approaches to estimate optical water quality parameters from remotely sensed spectral data based on the definitions given by Morel & Gordon (1980): (1) an empirical method, in which statistical relationships between the upward radiance at the sea surface and the quantity of interest are taken into account; (2) a semiempirical method, in which the spectral characteristics of the parameters of interest are known and some modeling of the physics is introduced; and (3) an analytical method, in which radiative transfer models are used to extract the inherent optical properties (lOPs) and a suite of analysis methods can be used to optimally retrieve the water constituents from the remotely sensed upwelling radiance or irradiance reflectance signal. The focus of this research is the modification and application of analytical and statistical algorithms to characterize the physically based surface spectral reflectance for the waters of the Hudson/Raritan Estuary and to retrieve the water constituent concentrations from the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and LIght Detection And Ranging (LIDAR) signals. The approaches used here are based on the unique capabilities of AVIRIS and LIDAR data which can potentially provide a better understanding of how sunlight interacts with estuarine/inland water, especially when complemented with in situ measurements for analysis of water quality parameters and eutrophication processes. The results of analysis in forms of thematic maps are then input into geographic information system (GIS) of the study site for use by water resource managers and planners for better monitoring and management of water quality condition

    LANDSAT follow-on: A report by the applications survey groups. Volume 1: Executive summary

    Get PDF
    Attempts at operational usage of the LANDSAT imagery by non NASA users are studied with particular emphasis on profitable use of the imagery, as contrasted with investigations concerned with research and development of a technology. An evaluation is given of the functional capabilities of the LANDSAT follow-on and ground systems designs in terms of user requirements and desiderata for data measurements, products, and parameters. Applications survey groups (ASGs) were formed for mineral and petroleum exploration, inland water resources, land inventory, and agriculture. The members were drawn from all segments of the user community: Federal agencies, state and local governments or agencies (or from associations of such constituencies), industry and universities. They were selected so that in aggregate they would be able to adequately assess the state-of-the-art in their technical areas and represent this in the ASG deliberations

    Remote Sensing of Environment: Current status of Landsat program, science, and applications

    Get PDF
    Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat- 1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and followup with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop—justifying and encouraging current and future programmatic support for Landsat

    An ERTS-1 investigation for Lake Ontario and its basin

    Get PDF
    The author has identified the following significant results. Methods of manual, semi-automatic, and automatic (computer) data processing were evaluated, as were the requirements for spatial physiographic and limnological information. The coupling of specially processed ERTS data with simulation models of the watershed precipitation/runoff process provides potential for water resources management. Optimal and full use of the data requires a mix of data processing and analysis techniques, including single band editing, two band ratios, and multiband combinations. A combination of maximum likelihood ratio and near-IR/red band ratio processing was found to be particularly useful

    Developments in Earth observation for the assessment and monitoring of inland, transitional, coastal and shelf-sea waters

    Get PDF
    The Earth's surface waters are a fundamental resource and encompass a broad range of ecosystems that are core to global biogeochemical cycling and food and energy production. Despite this, the Earth's surface waters are impacted by multiple natural and anthropogenic pressures and drivers of environmental change. The complex interaction between physical, chemical and biological processes in surface waters poses significant challenges for in situ monitoring and assessment and often limits our ability to adequately capture the dynamics of aquatic systems and our understanding of their status, functioning and response to pressures. Here we explore the opportunities that Earth observation (EO) has to offer to basin-scale monitoring of water quality over the surface water continuum comprising inland, transition and coastal water bodies, with a particular focus on the Danube and Black Sea region. This review summarises the technological advances in EO and the opportunities that the next generation satellites offer for water quality monitoring. We provide an overview of algorithms for the retrieval of water quality parameters and demonstrate how such models have been used for the assessment and monitoring of inland, transitional, coastal and shelf-sea systems. Further, we argue that very few studies have investigated the connectivity between these systems especially in large river-sea systems such as the Danube-Black Sea. Subsequently, we describe current capability in operational processing of archive and near real-time satellite data. We conclude that while the operational use of satellites for the assessment and monitoring of surface waters is still developing for inland and coastal waters and more work is required on the development and validation of remote sensing algorithms for these optically complex waters, the potential that these data streams offer for developing an improved, potentially paradigm-shifting understanding of physical and biogeochemical processes across large scale river-sea continuum including the Danube-Black Sea is considerable

    Exploration of Spatial and Temporal Changes in Trophic Status of Lakes in the Northern Temporal Forest Biome Using Remote Sensing

    Get PDF
    There is a critical need for detailed surveys of lakes covering large spatial (\u3e100 km2) and temporal scales (decades) to determine if there is an increase in the magnitude and frequency of phytoplankton blooms. Remote sensing was used to: (1) develop a regression model that relates chlorophyll a (chl-a) as a proxy of lake phytoplankton biomass to Landsat TM and ETM+ optical reflectance (r2=0.85,
    • …
    corecore