3 research outputs found

    Generative adversarial network-created brain SPECTs of cerebral ischemia are indistinguishable to scans from real patients

    Get PDF
    Deep convolutional generative adversarial networks (GAN) allow for creating images from existing databases. We applied a modified light-weight GAN (FastGAN) algorithm to cerebral blood flow SPECTs and aimed to evaluate whether this technology can generate created images close to real patients. Investigating three anatomical levels (cerebellum, CER; basal ganglia, BG; cortex, COR), 551 normal (248 CER, 174 BG, 129 COR) and 387 pathological brain SPECTs using N-isopropyl p-I-123-iodoamphetamine (I-123-IMP) were included. For the latter scans, cerebral ischemic disease comprised 291 uni- (66 CER, 116 BG, 109 COR) and 96 bilateral defect patterns (44 BG, 52 COR). Our model was trained using a three-compartment anatomical input (dataset 'A'; including CER, BG, and COR), while for dataset 'B', only one anatomical region (COR) was included. Quantitative analyses provided mean counts (MC) and left/right (LR) hemisphere ratios, which were then compared to quantification from real images. For MC, 'B' was significantly different for normal and bilateral defect patterns (P = 0.08) reached significance relative to images of real patients. With a minimum of only three anatomical compartments serving as stimuli, created cerebral SPECTs are indistinguishable to images from real patients. The applied FastGAN algorithm may allow to provide sufficient scan numbers in various clinical scenarios, e.g., for "data-hungry" deep learning technologies or in the context of orphan diseases

    Perspectives on Nuclear Medicine for Molecular Diagnosis and Integrated Therapy

    Get PDF
    nuclear medicine; diagnostic radiolog

    Quantitative mapping of basal and vasareactive cerebral blood flow using split-dose 123I-iodoamphetamine and single photon emission computed tomography

    No full text
    A new method has been developed for diffusible tracers, to quantify CBF at rest and after pharmacological stress from a single session of dynamic scans with dual bolus administration of a radiotracer. The calculation process consisted of three steps, including the procedures of incorporating background radioactivity contaminated from the previous scan. Feasibility of this approach was tested on clinical SPECT studies on 16 subjects. Two sequential SPECT scans, 30 min apart, were carried out on each subject, after each of two splitdose administrations of 111 MBq IMP. Of these, 11 subjects received acetazolamide at 10 min before the second IMP injection. Additional PET scans were also carried out on 6 subjects on a separate day, at rest and after acetazolamide administration. The other 5 subjects were scanned only at rest during the whole study period. Quantitative CBF obtained by this method was in a good agreement with those determined with PET (y(ml/100 g/min)=1.07%*(ml/100 g/min)-1.14, r=0.94). Vasareactivity was approximately 40% over the whole cerebral area on healthy controls, which was consistent with a literature value. Reproducibility of CBF determined in the rest–rest study was 1.5+/-5.7%. Noise enhancement of CBF images, particularly the second CBF, was reduced, providing reasonable image quality.Repeat assessment of quantitative CBF from a single session of scans with split-dose IMP is accurate, and may be applied to clinical research for assessing vascular reactivity in patients with chronic cerebral vascular disease
    corecore