204,154 research outputs found

    Quantitative information-flow tracking for real systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 99-105).An information-flow security policy constrains a computer system's end-to-end use of information, even as it is transformed in computation. For instance, a policy would not just restrict what secret data could be revealed directly, but restrict any output that might allow inferences about the secret. Expressing such a policy quantitatively, in terms of a specific number of bits of information, is often an effective program independent way of distinguishing what scenarios should be allowed and disallowed. This thesis describes a family of new techniques for measuring how much information about a program's secret inputs is revealed by its public outputs on a particular execution, in order to check a quantitative policy on realistic systems. Our approach builds on dynamic tainting, tracking at runtime which bits might contain secret in formation, and also uses static control-flow regions to soundly account for implicit flows via branches and pointer operations. We introduce a new graph model that bounds information flow by the maximum flow between inputs and outputs in a flow network representation of an execution. The flow bounds obtained with maximum flow are much more precise than those based on tainting alone (which is equivalent to graph reachability). The bounds are a conservative estimate of channel capacity: the amount of information that could be transmitted by an adversary making an arbitrary choice of secret inputs. We describe an implementation named Flowcheck, built using the Valgrind framework for x86/Linux binaries, and use it to perform case studies on six real C, C++, and Objective C programs, three of which have more than 250,000 lines of code. We used the tool to check the confidentiality of a different kind of information appropriate to each program. Its results either verified that the information was appropriately kept secret on the examined executions, or revealed unacceptable leaks, in one case due to a previously unknown bug.by Stephen Andrew McCamant.Ph.D

    Hallucinating dense optical flow from sparse lidar for autonomous vehicles

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper we propose a novel approach to estimate dense optical flow from sparse lidar data acquired on an autonomous vehicle. This is intended to be used as a drop-in replacement of any image-based optical flow system when images are not reliable due to e.g. adverse weather conditions or at night. In order to infer high resolution 2D flows from discrete range data we devise a three-block architecture of multiscale filters that combines multiple intermediate objectives, both in the lidar and image domain. To train this network we introduce a dataset with approximately 20K lidar samples of the Kitti dataset which we have augmented with a pseudo ground-truth image-based optical flow computed using FlowNet2. We demonstrate the effectiveness of our approach on Kitti, and show that despite using the low-resolution and sparse measurements of the lidar, we can regress dense optical flow maps which are at par with those estimated with image-based methods.Peer ReviewedPostprint (author's final draft

    DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments

    Full text link
    Simultaneous Localization and Mapping (SLAM) is considered to be a fundamental capability for intelligent mobile robots. Over the past decades, many impressed SLAM systems have been developed and achieved good performance under certain circumstances. However, some problems are still not well solved, for example, how to tackle the moving objects in the dynamic environments, how to make the robots truly understand the surroundings and accomplish advanced tasks. In this paper, a robust semantic visual SLAM towards dynamic environments named DS-SLAM is proposed. Five threads run in parallel in DS-SLAM: tracking, semantic segmentation, local mapping, loop closing, and dense semantic map creation. DS-SLAM combines semantic segmentation network with moving consistency check method to reduce the impact of dynamic objects, and thus the localization accuracy is highly improved in dynamic environments. Meanwhile, a dense semantic octo-tree map is produced, which could be employed for high-level tasks. We conduct experiments both on TUM RGB-D dataset and in the real-world environment. The results demonstrate the absolute trajectory accuracy in DS-SLAM can be improved by one order of magnitude compared with ORB-SLAM2. It is one of the state-of-the-art SLAM systems in high-dynamic environments. Now the code is available at our github: https://github.com/ivipsourcecode/DS-SLAMComment: 7 pages, accepted at the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018). Now the code is available at our github: https://github.com/ivipsourcecode/DS-SLA

    Robust Dense Mapping for Large-Scale Dynamic Environments

    Full text link
    We present a stereo-based dense mapping algorithm for large-scale dynamic urban environments. In contrast to other existing methods, we simultaneously reconstruct the static background, the moving objects, and the potentially moving but currently stationary objects separately, which is desirable for high-level mobile robotic tasks such as path planning in crowded environments. We use both instance-aware semantic segmentation and sparse scene flow to classify objects as either background, moving, or potentially moving, thereby ensuring that the system is able to model objects with the potential to transition from static to dynamic, such as parked cars. Given camera poses estimated from visual odometry, both the background and the (potentially) moving objects are reconstructed separately by fusing the depth maps computed from the stereo input. In addition to visual odometry, sparse scene flow is also used to estimate the 3D motions of the detected moving objects, in order to reconstruct them accurately. A map pruning technique is further developed to improve reconstruction accuracy and reduce memory consumption, leading to increased scalability. We evaluate our system thoroughly on the well-known KITTI dataset. Our system is capable of running on a PC at approximately 2.5Hz, with the primary bottleneck being the instance-aware semantic segmentation, which is a limitation we hope to address in future work. The source code is available from the project website (http://andreibarsan.github.io/dynslam).Comment: Presented at IEEE International Conference on Robotics and Automation (ICRA), 201

    Deep Forward and Inverse Perceptual Models for Tracking and Prediction

    Full text link
    We consider the problems of learning forward models that map state to high-dimensional images and inverse models that map high-dimensional images to state in robotics. Specifically, we present a perceptual model for generating video frames from state with deep networks, and provide a framework for its use in tracking and prediction tasks. We show that our proposed model greatly outperforms standard deconvolutional methods and GANs for image generation, producing clear, photo-realistic images. We also develop a convolutional neural network model for state estimation and compare the result to an Extended Kalman Filter to estimate robot trajectories. We validate all models on a real robotic system.Comment: 8 pages, International Conference on Robotics and Automation (ICRA) 201
    • …
    corecore