1,408 research outputs found

    A Novel Variable Precision Reduction Approach to Comprehensive Knowledge Systems

    Get PDF

    Vision-based neural network classifiers and their applications

    Get PDF
    A thesis submitted for the degree of Doctor of Philosophy of University of LutonVisual inspection of defects is an important part of quality assurance in many fields of production. It plays a very useful role in industrial applications in order to relieve human inspectors and improve the inspection accuracy and hence increasing productivity. Research has previously been done in defect classification of wood veneers using techniques such as neural networks, and a certain degree of success has been achieved. However, to improve results in tenus of both classification accuracy and running time are necessary if the techniques are to be widely adopted in industry, which has motivated this research. This research presents a method using rough sets based neural network with fuzzy input (RNNFI). Variable precision rough set (VPRS) method is proposed to remove redundant features utilising the characteristics of VPRS for data analysis and processing. The reduced data is fuzzified to represent the feature data in a more suitable foml for input to an improved BP neural network classifier. The improved BP neural network classifier is improved in three aspects: additional momentum, self-adaptive learning rates and dynamic error segmenting. Finally, to further consummate the classifier, a uniform design CUD) approach is introduced to optimise the key parameters because UD can generate a minimal set of uniform and representative design points scattered within the experiment domain. Optimal factor settings are achieved using a response surface (RSM) model and the nonlinear quadratic programming algorithm (NLPQL). Experiments have shown that the hybrid method is capable of classifying the defects of wood veneers with a fast convergence speed and high classification accuracy, comparing with other methods such as a neural network with fuzzy input and a rough sets based neural network. The research has demonstrated a methodology for visual inspection of defects, especially for situations where there is a large amount of data and a fast running speed is required. It is expected that this method can be applied to automatic visual inspection for production lines of other products such as ceramic tiles and strip steel

    Elasto-plastic deformations within a material point framework on modern GPU architectures

    Get PDF
    Plastic strain localization is an important process on Earth. It strongly influ- ences the mechanical behaviour of natural processes, such as fault mechanics, earthquakes or orogeny. At a smaller scale, a landslide is a fantastic example of elasto-plastic deformations. Such behaviour spans from pre-failure mech- anisms to post-failure propagation of the unstable material. To fully resolve the landslide mechanics, the selected numerical methods should be able to efficiently address a wide range of deformation magnitudes. Accurate and performant numerical modelling requires important compu- tational resources. Mesh-free numerical methods such as the material point method (MPM) or the smoothed-particle hydrodynamics (SPH) are particu- larly computationally expensive, when compared with mesh-based methods, such as the finite element method (FEM) or the finite difference method (FDM). Still, mesh-free methods are particularly well-suited to numerical problems involving large elasto-plastic deformations. But, the computational efficiency of these methods should be first improved in order to tackle complex three-dimensional problems, i.e., landslides. As such, this research work attempts to alleviate the computational cost of the material point method by using the most recent graphics processing unit (GPU) architectures available. GPUs are many-core processors originally designed to refresh screen pixels (e.g., for computer games) independently. This allows GPUs to delivers a massive parallelism when compared to central processing units (CPUs). To do so, this research work first investigates code prototyping in a high- level language, e.g., MATLAB. This allows to implement vectorized algorithms and benchmark numerical results of two-dimensional analysis with analytical solutions and/or experimental results in an affordable amount of time. After- wards, low-level language such as CUDA C is used to efficiently implement a GPU-based solver, i.e., ep2-3De v1.0, can resolve three-dimensional prob- lems in a decent amount of time. This part takes advantages of the massive parallelism of modern GPU architectures. In addition, a first attempt of GPU parallel computing, i.e., multi-GPU codes, is performed to increase even more the performance and to address the on-chip memory limitation. Finally, this GPU-based solver is used to investigate three-dimensional granular collapses and is compared with experimental evidences obtained in the laboratory. This research work demonstrates that the material point method is well suited to resolve small to large elasto-plastic deformations. Moreover, the computational efficiency of the method can be dramatically increased using modern GPU architectures. These allow fast, performant and accurate three- dimensional modelling of landslides, provided that the on-chip memory limi- tation is alleviated with an appropriate parallel strategy

    Bringing Anatomical Information into Neuronal Network Models

    Full text link
    For constructing neuronal network models computational neuroscientists have access to wide-ranging anatomical data that nevertheless tend to cover only a fraction of the parameters to be determined. Finding and interpreting the most relevant data, estimating missing values, and combining the data and estimates from various sources into a coherent whole is a daunting task. With this chapter we aim to provide guidance to modelers by describing the main types of anatomical data that may be useful for informing neuronal network models. We further discuss aspects of the underlying experimental techniques relevant to the interpretation of the data, list particularly comprehensive data sets, and describe methods for filling in the gaps in the experimental data. Such methods of `predictive connectomics' estimate connectivity where the data are lacking based on statistical relationships with known quantities. It is instructive, and in certain cases necessary, to use organizational principles that link the plethora of data within a unifying framework where regularities of brain structure can be exploited to inform computational models. In addition, we touch upon the most prominent features of brain organization that are likely to influence predicted neuronal network dynamics, with a focus on the mammalian cerebral cortex. Given the still existing need for modelers to navigate a complex data landscape full of holes and stumbling blocks, it is vital that the field of neuroanatomy is moving toward increasingly systematic data collection, representation, and publication

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    Learning-based robotic manipulation for dynamic object handling : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechatronic Engineering at the School of Food and Advanced Technology, Massey University, Turitea Campus, Palmerston North, New Zealand

    Get PDF
    Figures are re-used in this thesis with permission of their respective publishers or under a Creative Commons licence.Recent trends have shown that the lifecycles and production volumes of modern products are shortening. Consequently, many manufacturers subject to frequent change prefer flexible and reconfigurable production systems. Such schemes are often achieved by means of manual assembly, as conventional automated systems are perceived as lacking flexibility. Production lines that incorporate human workers are particularly common within consumer electronics and small appliances. Artificial intelligence (AI) is a possible avenue to achieve smart robotic automation in this context. In this research it is argued that a robust, autonomous object handling process plays a crucial role in future manufacturing systems that incorporate robotics—key to further closing the gap between manual and fully automated production. Novel object grasping is a difficult task, confounded by many factors including object geometry, weight distribution, friction coefficients and deformation characteristics. Sensing and actuation accuracy can also significantly impact manipulation quality. Another challenge is understanding the relationship between these factors, a specific grasping strategy, the robotic arm and the employed end-effector. Manipulation has been a central research topic within robotics for many years. Some works focus on design, i.e. specifying a gripper-object interface such that the effects of imprecise gripper placement and other confounding control-related factors are mitigated. Many universal robotic gripper designs have been considered, including 3-fingered gripper designs, anthropomorphic grippers, granular jamming end-effectors and underactuated mechanisms. While such approaches have maintained some interest, contemporary works predominantly utilise machine learning in conjunction with imaging technologies and generic force-closure end-effectors. Neural networks that utilise supervised and unsupervised learning schemes with an RGB or RGB-D input make up the bulk of publications within this field. Though many solutions have been studied, automatically generating a robust grasp configuration for objects not known a priori, remains an open-ended problem. An element of this issue relates to a lack of objective performance metrics to quantify the effectiveness of a solution—which has traditionally driven the direction of community focus by highlighting gaps in the state-of-the-art. This research employs monocular vision and deep learning to generate—and select from—a set of hypothesis grasps. A significant portion of this research relates to the process by which a final grasp is selected. Grasp synthesis is achieved by sampling the workspace using convolutional neural networks trained to recognise prospective grasp areas. Each potential pose is evaluated by the proposed method in conjunction with other input modalities—such as load-cells and an alternate perspective. To overcome human bias and build upon traditional metrics, scores are established to objectively quantify the quality of an executed grasp trial. Learning frameworks that aim to maximise for these scores are employed in the selection process to improve performance. The proposed methodology and associated metrics are empirically evaluated. A physical prototype system was constructed, employing a Dobot Magician robotic manipulator, vision enclosure, imaging system, conveyor, sensing unit and control system. Over 4,000 trials were conducted utilising 100 objects. Experimentation showed that robotic manipulation quality could be improved by 10.3% when selecting to optimise for the proposed metrics—quantified by a metric related to translational error. Trials further demonstrated a grasp success rate of 99.3% for known objects and 98.9% for objects for which a priori information is unavailable. For unknown objects, this equated to an improvement of approximately 10% relative to other similar methodologies in literature. A 5.3% reduction in grasp rate was observed when removing the metrics as selection criteria for the prototype system. The system operated at approximately 1 Hz when contemporary hardware was employed. Experimentation demonstrated that selecting a grasp pose based on the proposed metrics improved grasp rates by up to 4.6% for known objects and 2.5% for unknown objects—compared to selecting for grasp rate alone. This project was sponsored by the Richard and Mary Earle Technology Trust, the Ken and Elizabeth Powell Bursary and the Massey University Foundation. Without the financial support provided by these entities, it would not have been possible to construct the physical robotic system used for testing and experimentation. This research adds to the field of robotic manipulation, contributing to topics on grasp-induced error analysis, post-grasp error minimisation, grasp synthesis framework design and general grasp synthesis. Three journal publications and one IEEE Xplore paper have been published as a result of this research

    Academic Year 2019-2020 Faculty Excellence Showcase, AFIT Graduate School of Engineering & Management

    Get PDF
    An excerpt from the Dean\u27s Message: There is no place like the Air Force Institute of Technology (AFIT). There is no academic group like AFIT’s Graduate School of Engineering and Management. Although we run an educational institution similar to many other institutions of higher learning, we are different and unique because of our defense-focused graduate-research-based academic programs. Our programs are designed to be relevant and responsive to national defense needs. Our programs are aligned with the prevailing priorities of the US Air Force and the US Department of Defense. Our faculty team has the requisite critical mass of service-tested faculty members. The unique composition of pure civilian faculty, military faculty, and service-retired civilian faculty makes AFIT truly unique, unlike any other academic institution anywhere

    Convergence of Intelligent Data Acquisition and Advanced Computing Systems

    Get PDF
    This book is a collection of published articles from the Sensors Special Issue on "Convergence of Intelligent Data Acquisition and Advanced Computing Systems". It includes extended versions of the conference contributions from the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2019), Metz, France, as well as external contributions
    corecore