327,927 research outputs found

    Analysis of wavelet-based full reference image quality assessment algorithm

    Get PDF
    Measurement of Image Quality plays an important role in numerous image processing applications such as forensic science, image enhancement, medical imaging, etc. In recent years, there is a growing interest among researchers in creating objective Image Quality Assessment (IQA) algorithms that can correlate well with perceived quality. A significant progress has been made for full reference (FR) IQA problem in the past decade. In this paper, we are comparing 5 selected FR IQA algorithms on TID2008 image datasets. The performance and evaluation results are shown in graphs and tables. The results of quantitative assessment showed wavelet-based IQA algorithm outperformed over the non-wavelet based IQA method except for WASH algorithm which the prediction value only outperformed for certain distortion types since it takes into account the essential structural data content of the image

    Aesthetic Enhancement via Color Area and Location Awareness

    Get PDF
    Choosing a suitable color palette can typically improve image aesthetic, where a naive way is choosing harmonious colors from some pre-defined color combinations in color wheels. However, color palettes only consider the usage of color types without specifying their amount in an image. Also, it is still challenging to automatically assign individual palette colors to suitable image regions for maximizing image aesthetic quality. Motivated by these, we propose to construct a contribution-aware color palette from images with high aesthetic quality, enabling color transfer by matching the coloring and regional characteristics of an input image. We hence exploit public image datasets, extracting color composition and embedded color contribution features from aesthetic images to generate our proposed color palettes. We consider both image area ratio and image location as the color contribution features to extract. We have conducted quantitative experiments to demonstrate that our method outperforms existing methods through SSIM (Structural SIMilarity) and PSNR (Peak Signal to Noise Ratio) for objective image quality measurement and no-reference image assessment (NIMA) for image aesthetic scoring

    Nanofocused X-ray tomography and image processing for quantitative analysis of pharmaceutical particulate solid products

    Get PDF
    The quantitative evaluation of particle properties connected to their structure and morphology is a common objective during process development and product optimisation of particulate solid systems. This aims to improve material-handling in the manufacturing process or to influence their final performance. However, often solid state analysis techniques are limited to bulk information or to the characterisation of individual particles. X-ray tomography can be utilised to visualise and assess the 3D structure of a wide range of solid products.1-3 This study demonstrates the use of a commercial nanofocused x-ray tomography system and subsequent image-processing and - analysis strategies for the quantitative non-destructive analysis applicable to pharmaceutical particulate solid products. The application of nanofocused x-ray tomography to assess the multi-dimensional structural properties of particulate pharmaceutical solid systems was demonstrated on commercially available Ibuprofen capsule product containing a population of formulated pellets for sustained release. Special emphasis was the extraction of quantitative structural descriptors that allow a non-destructive descriptor-based statistical evaluation of the pellet population in each capsule. High-resolution image acquisition, image-processing and analysis enable in-depth investigation of each individual pellet. One important step during the image processing is the successful implementation of a 3D volume segmentation algorithm for connected volume elements. The volume separation of each pellet allows the subsequent extraction of structural descriptors related to pellet properties such as porosity, size/shape, surface area, and solid phase uniformity.4 The full structural characterisation of each pellet enabled a conclusive descriptor-based statistical evaluation of the pellet population. Identification of population outliers can be linked to a number of broken pellets within the final dosage. The structure of the pellet population and the amount of broken pellets can have a significant impact on material disintegration and therefore, on the overall drug release performance. Their quantification can be used as part of a non-destructive final product quality assessment. The implementation of robust strategies for the extraction of quantitative information on critical quality attributes related to structural properties of particulate systems can help the acceleration of process and product development for formulations of novel drug candidates. X-ray tomography in combination with advanced image-processing and –analysis techniques can be applied to a wide range of solid particulate systems for the quantitative characterisation of particle properties. The non-destructive nature of this method allows a further correlation of the structural properties to the product’s final performance within the manufacturing process or after administration to the patient

    Time-saving opportunities in knee osteoarthritis: T2 mapping and structural imaging of the knee using a single 5-min MRI scan.

    Get PDF
    OBJECTIVES: To assess the discriminative power of a 5-min quantitative double-echo steady-state (qDESS) sequence for simultaneous T2 measurements of cartilage and meniscus, and structural knee osteoarthritis (OA) assessment, in a clinical OA population, using radiographic knee OA as reference standard. METHODS: Fifty-three subjects were included and divided over three groups based on radiographic and clinical knee OA: 20 subjects with no OA (Kellgren-Lawrence grade (KLG) 0), 18 with mild OA (KLG2), and 15 with moderate OA (KLG3). All patients underwent a 5-min qDESS scan. We measured T2 relaxation times in four cartilage and four meniscus regions of interest (ROIs) and performed structural OA evaluation with the MRI Osteoarthritis Knee Score (MOAKS) using qDESS with multiplanar reformatting. Between-group differences in T2 values and MOAKS were calculated using ANOVA. Correlations of the reference standard (i.e., radiographic knee OA) with T2 and MOAKS were assessed with correlation analyses for ordinal variables. RESULTS: In cartilage, mean T2 values were 36.1 ± SD 4.3, 40.6 ± 5.9, and 47.1 ± 4.3 ms for no, mild, and moderate OA, respectively (p < 0.001). In menisci, mean T2 values were 15 ± 3.6, 17.5 ± 3.8, and 20.6 ± 4.7 ms for no, mild, and moderate OA, respectively (p < 0.001). Statistically significant correlations were found between radiographic OA and T2 and between radiographic OA and MOAKS in all ROIs (p < 0.05). CONCLUSION: Quantitative T2 and structural assessment of cartilage and meniscus, using a single 5-min qDESS scan, can distinguish between different grades of radiographic OA, demonstrating the potential of qDESS as an efficient tool for OA imaging. KEY POINTS: • Quantitative T 2values of cartilage and meniscus as well as structural assessment of the knee with a single 5-min quantitative double-echo steady-state (qDESS) scan can distinguish between different grades of knee osteoarthritis (OA). • Quantitative and structural qDESS-based measurements correlate significantly with the reference standard, radiographic degree of OA, for all cartilage and meniscus regions. • By providing quantitative measurements and diagnostic image quality in one rapid MRI scan, qDESS has great potential for application in large-scale clinical trials in knee OA

    Emerging imaging techniques in spondyloarthritis dual-energy computed tomography and new MRI sequences

    Get PDF
    Imaging of the sacroiliac joint plays a critical role in the classification of patients with axial spondyloarthritis. New imaging techniques are emerging, changing the way clinicians look at the sacroiliac joint. This article introduces the novel techniques in imaging of spondyloarthritis, including dual-energy computed tomography and new MRI sequences, with a focus on the imaging of bone marrow edema and erosions of the sacroiliac joint

    Deep grey matter volumetry as a function of age using a semi-automatic qMRI algorithm

    Full text link
    Quantitative Magnetic Resonance has become more and more accepted for clinical trial in many fields. This technique not only can generate qMRI maps (such as T1/T2/PD) but also can be used for further postprocessing including segmentation of brain and characterization of different brain tissue. Another main application of qMRI is to measure the volume of the brain tissue such as the deep Grey Matter (dGM). The deep grey matter serves as the brain's "relay station" which receives and sends inputs between the cortical brain regions. An abnormal volume of the dGM is associated with certain diseases such as Fetal Alcohol Spectrum Disorders (FASD). The goal of this study is to investigate the effect of age on the volume change of the dGM using qMRI. Thirteen patients (mean age= 26.7 years old and age range from 0.5 to 72.5 years old) underwent imaging at a 1.5T MR scanner. Axial images of the entire brain were acquired with the mixed Turbo Spin-echo (mixed -TSE) pulse sequence. The acquired mixed-TSE images were transferred in DICOM format image for further analysis using the MathCAD 2001i software (Mathsoft, Cambridge, MA). Quantitative T1 and T2-weighted MR images were generated. The image data sets were further segmented using the dual-space clustering segmentation. Then volume of the dGM matter was calculated using a pixel counting algorithm and the spectrum of the T1/T2/PD distribution were also generated. Afterwards, the dGM volume of each patient was calculated and plotted on scatter plot. The mean volume of the dGM, standard deviation, and range were also calculated. The result shows that volume of the dGM is 47.5 ±5.3ml (N=13) which is consistent with former studies. The polynomial tendency line generated based on scatter plot shows that the volume of the dGM gradually increases with age at early age and reaches the maximum volume around the age of 20, and then it starts to decrease gradually in adulthood and drops much faster in elderly age. This result may help scientists to understand more about the aging of the brain and it can also be used to compare with the results from former studies using different techniques

    Projection Space Implementation of Deep Learning-Guided Low-Dose Brain PET Imaging Improves Performance over Implementation in Image Space

    Get PDF
    Purpose: To assess the performance of full dose (FD) positron emission tomography (PET) image synthesis in both image and projection space from low-dose (LD) PET images/sinograms without sacrificing diagnostic quality using deep learning techniques. Methods: Clinical brain PET/CT studies of 140 patients were retrospectively employed for LD to FD PET conversion. 5% of the events were randomly selected from the FD list-mode PET data to simulate a realistic LD acquisition. A modified 3D U-Net model was implemented to predict FD sinograms in the projection-space (PSS) and FD images in image-space (PIS) from their corresponding LD sinograms/images, respectively. The quality of the predicted PET images was assessed by two nuclear medicine specialists using a five-point grading scheme. Quantitative analysis using established metrics including the peak signal-to-noise ratio (PSNR), structural similarity index metric (SSIM), region-wise standardized uptake value (SUV) bias, as well as first-, second- and high-order texture radiomic features in 83 brain regions for the test and evaluation dataset was also performed. Results: All PSS images were scored 4 or higher (good to excellent) by the nuclear medicine specialists. PSNR and SSIM values of 0.96 ± 0.03, 0.97 ± 0.02 and 31.70 ± 0.75, 37.30 ± 0.71 were obtained for PIS and PSS, respectively. The average SUV bias calculated over all brain regions was 0.24 ± 0.96% and 1.05 ± 1.44% for PSS and PIS, respectively. The Bland-Altman plots reported the lowest SUV bias (0.02) and variance (95% CI: -0.92, +0.84) for PSS compared with the reference FD images. The relative error of the homogeneity radiomic feature belonging to the Grey Level Co-occurrence Matrix category was -1.07 ± 1.77 and 0.28 ± 1.4 for PIS and PSS, respectively Conclusion: The qualitative assessment and quantitative analysis demonstrated that the FD PET prediction in projection space led to superior performance, resulting in higher image quality and lower SUV bias and variance compared to FD PET prediction in the image domain
    • …
    corecore