952 research outputs found

    Analyzing Prosody with Legendre Polynomial Coefficients

    Full text link
    This investigation demonstrates the effectiveness of Legendre polynomial coefficients representing prosodic contours within the context of two different tasks: nativeness classification and sarcasm detection. By making use of accurate representations of prosodic contours to answer fundamental linguistic questions, we contribute significantly to the body of research focused on analyzing prosody in linguistics as well as modeling prosody for machine learning tasks. Using Legendre polynomial coefficient representations of prosodic contours, we answer prosodic questions about differences in prosody between native English speakers and non-native English speakers whose first language is Mandarin. We also learn more about prosodic qualities of sarcastic speech. We additionally perform machine learning classification for both tasks, (achieving an accuracy of 72.3% for nativeness classification, and achieving 81.57% for sarcasm detection). We recommend that linguists looking to analyze prosodic contours make use of Legendre polynomial coefficients modeling; the accuracy and quality of the resulting prosodic contour representations makes them highly interpretable for linguistic analysis

    Toward invariant functional representations of variable surface fundamental frequency contours: Synthesizing speech melody via model-based stochastic learning

    Get PDF
    Variability has been one of the major challenges for both theoretical understanding and computer synthesis of speech prosody. In this paper we show that economical representation of variability is the key to effective modeling of prosody. Specifically, we report the development of PENTAtrainer—A trainable yet deterministic prosody synthesizer based on an articulatory–functional view of speech. We show with testing results on Thai, Mandarin and English that it is possible to achieve high-accuracy predictive synthesis of fundamental frequency contours with very small sets of parameters obtained through stochastic learning from real speech data. The first key component of this system is syllable-synchronized sequential target approximation—implemented as the qTA model, which is designed to simulate, for each tonal unit, a wide range of contextual variability with a single invariant target. The second key component is the automatic learning of function-specific targets through stochastic global optimization, guided by a layered pseudo-hierarchical functional annotation scheme, which requires the manual labeling of only the temporal domains of the functional units. The results in terms of synthesis accuracy demonstrate that effective modeling of the contextual variability is the key also to effective modeling of function-related variability. Additionally, we show that, being both theory-based and trainable (hence data-driven), computational systems like PENTAtrainer can serve as an effective modeling tool in basic research, with which the level of falsifiability in theory testing can be raised, and also a closer link between basic and applied research in speech science can be developed

    The listening talker: A review of human and algorithmic context-induced modifications of speech

    Get PDF
    International audienceSpeech output technology is finding widespread application, including in scenarios where intelligibility might be compromised - at least for some listeners - by adverse conditions. Unlike most current algorithms, talkers continually adapt their speech patterns as a response to the immediate context of spoken communication, where the type of interlocutor and the environment are the dominant situational factors influencing speech production. Observations of talker behaviour can motivate the design of more robust speech output algorithms. Starting with a listener-oriented categorisation of possible goals for speech modification, this review article summarises the extensive set of behavioural findings related to human speech modification, identifies which factors appear to be beneficial, and goes on to examine previous computational attempts to improve intelligibility in noise. The review concludes by tabulating 46 speech modifications, many of which have yet to be perceptually or algorithmically evaluated. Consequently, the review provides a roadmap for future work in improving the robustness of speech output

    Investigating the build-up of precedence effect using reflection masking

    Get PDF
    The auditory processing level involved in the build‐up of precedence [Freyman et al., J. Acoust. Soc. Am. 90, 874–884 (1991)] has been investigated here by employing reflection masked threshold (RMT) techniques. Given that RMT techniques are generally assumed to address lower levels of the auditory signal processing, such an approach represents a bottom‐up approach to the buildup of precedence. Three conditioner configurations measuring a possible buildup of reflection suppression were compared to the baseline RMT for four reflection delays ranging from 2.5–15 ms. No buildup of reflection suppression was observed for any of the conditioner configurations. Buildup of template (decrease in RMT for two of the conditioners), on the other hand, was found to be delay dependent. For five of six listeners, with reflection delay=2.5 and 15 ms, RMT decreased relative to the baseline. For 5‐ and 10‐ms delay, no change in threshold was observed. It is concluded that the low‐level auditory processing involved in RMT is not sufficient to realize a buildup of reflection suppression. This confirms suggestions that higher level processing is involved in PE buildup. The observed enhancement of reflection detection (RMT) may contribute to active suppression at higher processing levels

    Multiple prosodic meanings are conveyed through separate pitch ranges: Evidence from perception of focus and surprise in Mandarin Chinese

    Get PDF
    F0 variation is a crucial feature in speech prosody, which can convey linguistic information such as focus and paralinguistic meanings such as surprise. How can multiple layers of information be represented with F0 in speech: are they divided into discrete layers of pitch or overlapped without clear divisions? We investigated this question by assessing pitch perception of focus and surprise in Mandarin Chinese. Seventeen native Mandarin listeners rated the strength of focus and surprise conveyed by the same set of synthetically manipulated sentences. An fMRI experiment was conducted to assess neural correlates of the listeners’ perceptual response to the stimuli. The results showed that behaviourally, the perceptual threshold for focus was 3 semitones and that for surprise was 5 semitones above the baseline. Moreover, the pitch range of 5-12 semitones above the baseline signalled both focus and surprise, suggesting a considerable overlap between the two types of prosodic information within this range. The neuroimaging data positively correlated with the variations in behavioural data. Also, a ceiling effect was found as no significant behavioural differences or neural activities were shown after reaching a certain pitch level for the perception of focus and surprise respectively. Together, the results suggest that different layers of prosodic information are represented in F0 through different pitch ranges: paralinguistic information is represented at a pitch range beyond that used by linguistic information. Meanwhile, the representation of paralinguistic information is achieved without obscuring linguistic prosody, thus allowing F0 to represent the two layers of information in parallel

    On the mechanism of response latencies in auditory nerve fibers

    Get PDF
    Despite the structural differences of the middle and inner ears, the latency pattern in auditory nerve fibers to an identical sound has been found similar across numerous species. Studies have shown the similarity in remarkable species with distinct cochleae or even without a basilar membrane. This stimulus-, neuron-, and species- independent similarity of latency cannot be simply explained by the concept of cochlear traveling waves that is generally accepted as the main cause of the neural latency pattern. An original concept of Fourier pattern is defined, intended to characterize a feature of temporal processing—specifically phase encoding—that is not readily apparent in more conventional analyses. The pattern is created by marking the first amplitude maximum for each sinusoid component of the stimulus, to encode phase information. The hypothesis is that the hearing organ serves as a running analyzer whose output reflects synchronization of auditory neural activity consistent with the Fourier pattern. A combined research of experimental, correlational and meta-analysis approaches is used to test the hypothesis. Manipulations included phase encoding and stimuli to test their effects on the predicted latency pattern. Animal studies in the literature using the same stimulus were then compared to determine the degree of relationship. The results show that each marking accounts for a large percentage of a corresponding peak latency in the peristimulus-time histogram. For each of the stimuli considered, the latency predicted by the Fourier pattern is highly correlated with the observed latency in the auditory nerve fiber of representative species. The results suggest that the hearing organ analyzes not only amplitude spectrum but also phase information in Fourier analysis, to distribute the specific spikes among auditory nerve fibers and within a single unit. This phase-encoding mechanism in Fourier analysis is proposed to be the common mechanism that, in the face of species differences in peripheral auditory hardware, accounts for the considerable similarities across species in their latency-by-frequency functions, in turn assuring optimal phase encoding across species. Also, the mechanism has the potential to improve phase encoding of cochlear implants

    Sequential grouping constraints on across-channel auditory processing

    Get PDF
    corecore