7,091 research outputs found

    The Tongue Enables Computer and Wheelchair Control for People with Spinal Cord Injury

    Get PDF
    The Tongue Drive System (TDS) is a wireless and wearable assistive technology, designed to allow individuals with severe motor impairments such as tetraplegia to access their environment using voluntary tongue motion. Previous TDS trials used a magnetic tracer temporarily attached to the top surface of the tongue with tissue adhesive. We investigated TDS efficacy for controlling a computer and driving a powered wheelchair in two groups of able-bodied subjects and a group of volunteers with spinal cord injury (SCI) at C6 or above. All participants received a magnetic tongue barbell and used the TDS for five to six consecutive sessions. The performance of the group was compared for TDS versus keypad and TDS versus a sip-and-puff device (SnP) using accepted measures of speed and accuracy. All performance measures improved over the course of the trial. The gap between keypad and TDS performance narrowed for able-bodied subjects. Despite participants with SCI already having familiarity with the SnP, their performance measures were up to three times better with the TDS than with the SnP and continued to improve. TDS flexibility and the inherent characteristics of the human tongue enabled individuals with high-level motor impairments to access computers and drive wheelchairs at speeds that were faster than traditional assistive technologies but with comparable accuracy

    Qualitative assessment of Tongue Drive System by people with high-level spinal cord injury

    Get PDF
    The Tongue Drive System (TDS) is a minimally invasive, wireless, and wearable assistive technology (AT) that enables people with severe disabilities to control their environments using tongue motion. TDS translates specific tongue gestures into commands by sensing the magnetic field created by a small magnetic tracer applied to the user’s tongue. We have previously quantitatively evaluated the TDS for accessing computers and powered wheelchairs, demonstrating its usability. In this study, we focused on its qualitative evaluation by people with high-level spinal cord injury who each received a magnetic tongue piercing and used the TDS for 6 wk. We used two questionnaires, an after-scenario and a poststudy, designed to evaluate the tongue-piercing experience and the TDS usability compared with that of the sip-and-puff and the users’ current ATs. After study completion, 73% of the participants were positive about keeping the magnetic tongue-barbell in order to use the TDS. All were satisfied with the TDS performance and most said that they were able to do more things using TDS than their current ATs (4.22/5)

    Advances in automated tongue diagnosis techniques

    Get PDF
    This paper reviews the recent advances in a significant constituent of traditional oriental medicinal technology, called tongue diagnosis. Tongue diagnosis can be an effective, noninvasive method to perform an auxiliary diagnosis any time anywhere, which can support the global need in the primary healthcare system. This work explores the literature to evaluate the works done on the various aspects of computerized tongue diagnosis, namely preprocessing, tongue detection, segmentation, feature extraction, tongue analysis, especially in traditional Chinese medicine (TCM). In spite of huge volume of work done on automatic tongue diagnosis (ATD), there is a lack of adequate survey, especially to combine it with the current diagnosis trends. This paper studies the merits, capabilities, and associated research gaps in current works on ATD systems. After exploring the algorithms used in tongue diagnosis, the current trend and global requirements in health domain motivates us to propose a conceptual framework for the automated tongue diagnostic system on mobile enabled platform. This framework will be able to connect tongue diagnosis with the future point-of-care health system

    Studies on the impact of assistive communication devices on the quality of life of patients with amyotrophic lateral sclerosis

    Get PDF
    Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2016Amyotrophic Lateral Sclerosis (ALS) is a progressive neuromuscular disease with rapid and generalized degeneration of motor neurons. Patients with ALS experiment a relentless decline in functions that affect performance of most activities of daily living (ADL), such as speaking, eating, walking or writing. For this reason, dependence on caregivers grows as the disease progresses. Management of the respiratory system is one of the main concerns of medical support, since respiratory failure is the most common cause of death in ALS. Due to increasing muscle weakness, most patients experience dramatic decrease of speech intelligibility and difficulties in using upper limbs (UL) for writing. There is growing evidence that mild cognitive impairment is common in ALS, but most patients are self-conscious of their difficulties in communicating and, in very severe stages, locked-in syndrome can occur. When no other resources than speech and writing are used to assist communication, patients are deprived of expressing needs or feelings, making decisions and keeping social relationships. Further, caregivers feel increased dependence due to difficulties in communication with others and get frustrated about difficulties in understanding partners’ needs. Support for communication is then very important to improve quality of life of both patients and caregivers; however, this has been poorly investigated in ALS. Assistive communication devices (ACD) can support patients by providing a diversity of tools for communication, as they progressively lose speech. ALS, in common with other degenerative conditions, introduces an additional challenge for the field of ACD: as the disease progresses, technologies must adapt to different conditions of the user. In early stages, patients may need speech synthesis in a mobile device, if dysarthria is one of the initial symptoms, or keyboard modifications, as weakness in UL increases. When upper limbs’ dysfunction is high, different input technologies may be adapted to capture voluntary control (for example, eye-tracking devices). Despite the enormous advances in the field of Assistive Technologies, in the last decade, difficulties in clinical support for the use of assistive communication devices (ACD) persist. Among the main reasons for these difficulties are lack of assessment tools to evaluate communication needs and determine proper input devices and to indicate changes over disease progression, and absence of clinical evidence that ACD has relevant impact on the quality of life of affected patients. For this set of reasons, support with communication tools is delayed to stages where patients are severely disabled. Often in these stages, patients face additional clinical complications and increased dependence on their caregivers’ decisions, which increase the difficulty in adaptation to new communication tools. This thesis addresses the role of assistive technologies in the quality of life of early-affected patients with ALS. Also, it includes the study of assessment tools that can improve longitudinal evaluation of communication needs of patients with ALS. We longitudinally evaluated a group of 30 patients with bulbar-onset ALS and 17 caregivers, during 2 to 29 months. Patients were assessed during their regular clinical appointments, in the Hospital de Santa Maria-Centro Hospitalar Lisboa_Norte. Evaluation of patients was based on validated instruments for assessing the Quality of Life (QoL) of patients and caregivers, and on methodologies for recording communication and measuring its performance (including speech, handwriting and typing). We tested the impact of early support with ACD on the QoL of patients with ALS, using a randomized, prospective, longitudinal design. Patients were able to learn and improve their skills to use communication tools based on electronic assistive devices. We found a positive impact of ACD in psychological and wellbeing domains of quality of life in patients, as well as in the support and psychological domains in caregivers. We also studied performance of communication (words per minute) using UL. Performance in handwriting may decline faster than performance in typing, supporting the idea that the use of touchscreen-based ACD supports communication for longer than handwriting. From longitudinal recordings of speech and typing activity we could observe that ACD can support tools to detect early markers of bulbar and UL dysfunction in ALS. Methodologies that were used in this research for recording and assessing function in communication can be replicated in the home environment and form part of the original contributions of this research. Implementation of remote monitoring tools in daily use of ACD, based on these methodologies, is discussed. Considering those patients who receive late support for the use of ACD, lack of time or daily support to learn how to control complex input devices may hinder its use. We developed a novel device to explore the detection and control of various residual movements, based on sensors of accelerometry, electromyography and force, as input signals for communication. The aim of this input device was to develop a tool to explore new communication channels in patients with generalized muscle weakness. This research contributed with novel tools from the Engineering field to the study of assistive communication in patients with ALS. Methodologies that were developed in this work can be further applied to the study of the impact of ACD in other neurodegenerative diseases that affect speech and motor control of UL

    The use of computers and augmentative and alternative communication devices by children and young with cerebral palsy

    Get PDF
    [Abstract] The purpose of the study was to determine the use of computers and assistive devices amongst children with cerebral palsy (CP) and establish the satisfaction level of both users and educational staff. The study was carried out with 30 children with cerebral palsy. A questionnaire was designed to characterize the use of new technologies and assistive devices. Some of the questions were reserved for the teachers. Even though 29 users show some type of communication difficulty, only 4 users dispose of a computer-aided communication device, with the static symbolic board being the most widely used device (4). More than half of the participants (17) regularly use a computer, 16 of them requiring some type of assistive device. The perception of the teachers with regard to the use of Information and Communications Technologies (ICTs) in the classrooms is positive in 5 out of 6 cases. ICTs only provide assistance if their application is accompanied by the involvement of professionals and the child's social environment. The low use of Augmentative and Alternative Communication techniques along with the absence of communication codes reveal the need to establish training protocols. The inclusion of social, physical, and personal factors is considered essential in order to evaluate the needs for assistive technology

    Technology applications

    Get PDF
    A summary of NASA Technology Utilization programs for the period of 1 December 1971 through 31 May 1972 is presented. An abbreviated description of the overall Technology Utilization Applications Program is provided as a background for the specific applications examples. Subjects discussed are in the broad headings of: (1) cancer, (2) cardiovascular disease, (2) medical instrumentation, (4) urinary system disorders, (5) rehabilitation medicine, (6) air and water pollution, (7) housing and urban construction, (8) fire safety, (9) law enforcement and criminalistics, (10) transportation, and (11) mine safety

    Design and evaluation of a multimodal assistive technology using tongue commands, head movements, and speech recognition for people with tetraplegia

    Get PDF
    People with high level (C1-C4) spinal cord injury (SCI) cannot use their limbs to do the daily life activities by themselves without assistance. Current assistive technologies (ATs) use remaining capabilities (tongue, muscle, brain, speech, sniffing) as an input method to help them control devices (computer, smartphone). However, these ATs are not very efficient as compared to the gold standards (mouse and keyboards, touch interfaces, joysticks, and so forth) which are being used in everyday life. Therefore, in this work, a novel multimodal assistive system is designed to provide better accessibility more intuitively. The multimodal Tongue Drive System (mTDS) utilizes three key remaining abilities (speech, tongue and head movements) to help people with tetraplegia control the environments such as accessing computers, smartphones or driving wheelchairs. Tongue commands are used as discrete/switch like inputs and head movements as proportional/continuous type inputs, and speech recognition to type texts faster compared to any keyboards to emulate a mouse-keyboard combined system to access computers/ smartphones. Novel signal processing algorithms are developed and implemented in the wearable unit to provide universal access to multiple devices from the wireless mTDS. Non-disabled subjects participated in multiple studies to find the efficacy of mTDS in comparison to gold standards, and people with tetraplegia to evaluate technology learning abilities. Significant improvements are observed in terms of increasing accuracy and speed while doing different computer access and wheelchair mobility tasks. Thus, with sufficient learning of mTDS, it is feasible to reduce the performance gap between a non-disabled and a person with tetraplegia compared to the existing ATs.Ph.D
    • …
    corecore