1,343 research outputs found

    Quality criteria benchmark for hyperspectral imagery

    Get PDF
    Hyperspectral data appear to be of a growing interest over the past few years. However, applications for hyperspectral data are still in their infancy as handling the significant size of the data presents a challenge for the user community. Efficient compression techniques are required, and lossy compression, specifically, will have a role to play, provided its impact on remote sensing applications remains insignificant. To assess the data quality, suitable distortion measures relevant to end-user applications are required. Quality criteria are also of a major interest for the conception and development of new sensors to define their requirements and specifications. This paper proposes a method to evaluate quality criteria in the context of hyperspectral images. The purpose is to provide quality criteria relevant to the impact of degradations on several classification applications. Different quality criteria are considered. Some are traditionnally used in image and video coding and are adapted here to hyperspectral images. Others are specific to hyperspectral data.We also propose the adaptation of two advanced criteria in the presence of different simulated degradations on AVIRIS hyperspectral images. Finally, five criteria are selected to give an accurate representation of the nature and the level of the degradation affecting hyperspectral data

    Data compression experiments with LANDSAT thematic mapper and Nimbus-7 coastal zone color scanner data

    Get PDF
    A case study is presented where an image segmentation based compression technique is applied to LANDSAT Thematic Mapper (TM) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression technique, called Spatially Constrained Clustering (SCC), can be regarded as an adaptive vector quantization approach. The SCC can be applied to either single or multiple spectral bands of image data. The segmented image resulting from SCC is encoded in small rectangular blocks, with the codebook varying from block to block. Lossless compression potential (LDP) of sample TM and CZCS images are evaluated. For the TM test image, the LCP is 2.79. For the CZCS test image the LCP is 1.89, even though when only a cloud-free section of the image is considered the LCP increases to 3.48. Examples of compressed images are shown at several compression ratios ranging from 4 to 15. In the case of TM data, the compressed data are classified using the Bayes' classifier. The results show an improvement in the similarity between the classification results and ground truth when compressed data are used, thus showing that compression is, in fact, a useful first step in the analysis

    Effects of JPEG and JPEG2000 lossy compression on remote sensing image classification for mapping crops and forest areas

    Get PDF
    This study measures the effect of lossy image compression on the digital classification of crops and forest areas. A hybrid classification method using satellite images and other variables has been used. The results contribute interesting new data on the influence of compression on the quality of the produced cartography, both from a "by pixel" perspective and regarding the homogeneity of the obtained polygons. The classified area in classifications only carried out with radiometric variables or with NDVI and humidity (for crops) increases as image compression increases, although the increase is smaller for JPEG2000 formats and for crops. On the other hand, the classified area decreases in classifications which also take into account topoclimatic variables (for forests). Overall image accuracy diminishes at high compression ratios (CR), although the point of inflection occurs at different CR depending on the compression format. As a rule, the JPEG2000 format gives better results quantitatively for forests (accuracy and classified area) and visually (images with less "salt and pepper" effect) for both land covers

    Compression of Spectral Images

    Get PDF

    Processing of Multichannel Remote-Sensing Images with Prediction of Performance Parameters

    Get PDF
    In processing of multichannel remote sensing data, there is a need in automation of basic operations as filtering and compression. Automation presumes undertaking a decision on expedience of image filtering. Automation also deals with obtaining of information based on which certain decisions can be undertaken or parameters of processing algorithms can be chosen. For the considered operations of denoising and lossy compression, it is shown that their basic performance characteristics can be quite easily predicted based on easily calculated local statistics in discrete cosine transform (DCT) domain. The described methodology of prediction is shown to be general and applicable to different types of noise under condition that its basic characteristics are known in advance or pre-estimated accurately

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    The CCSDS 123.0-B-2 Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression Standard: A comprehensive review

    Get PDF
    The Consultative Committee for Space Data Systems (CCSDS) published the CCSDS 123.0-B-2, “Low- Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression” standard. This standard extends the previous issue, CCSDS 123.0-B-1, which supported only lossless compression, while maintaining backward compatibility. The main novelty of the new issue is support for near-lossless compression, i.e., lossy compression with user-defined absolute and/or relative error limits in the reconstructed images. This new feature is achieved via closed-loop quantization of prediction errors. Two further additions arise from the new near lossless support: first, the calculation of predicted sample values using sample representatives that may not be equal to the reconstructed sample values, and, second, a new hybrid entropy coder designed to provide enhanced compression performance for low-entropy data, prevalent when non lossless compression is used. These new features enable significantly smaller compressed data volumes than those achievable with CCSDS 123.0-B-1 while controlling the quality of the decompressed images. As a result, larger amounts of valuable information can be retrieved given a set of bandwidth and energy consumption constraints
    • 

    corecore