70,797 research outputs found

    Toll Based Measures for Dynamical Graphs

    Get PDF
    Biological networks are one of the most studied object in computational biology. Several methods have been developed for studying qualitative properties of biological networks. Last decade had seen the improvement of molecular techniques that make quantitative analyses reachable. One of the major biological modelling goals is therefore to deal with the quantitative aspect of biological graphs. We propose a probabilistic model that suits with this quantitative aspects. Our model combines graph with several dynamical sources. It emphazises various asymptotic statistical properties that might be useful for giving biological insightsComment: 11 page

    Robust Feature Detection and Local Classification for Surfaces Based on Moment Analysis

    Get PDF
    The stable local classification of discrete surfaces with respect to features such as edges and corners or concave and convex regions, respectively, is as quite difficult as well as indispensable for many surface processing applications. Usually, the feature detection is done via a local curvature analysis. If concerned with large triangular and irregular grids, e.g., generated via a marching cube algorithm, the detectors are tedious to treat and a robust classification is hard to achieve. Here, a local classification method on surfaces is presented which avoids the evaluation of discretized curvature quantities. Moreover, it provides an indicator for smoothness of a given discrete surface and comes together with a built-in multiscale. The proposed classification tool is based on local zero and first moments on the discrete surface. The corresponding integral quantities are stable to compute and they give less noisy results compared to discrete curvature quantities. The stencil width for the integration of the moments turns out to be the scale parameter. Prospective surface processing applications are the segmentation on surfaces, surface comparison, and matching and surface modeling. Here, a method for feature preserving fairing of surfaces is discussed to underline the applicability of the presented approach.

    Sensory organ like response determines the magnetism of zigzag-edged honeycomb nanoribbons

    Full text link
    We present an analytical theory for the magnetic phase diagram for zigzag edge terminated honeycomb nanoribbons described by a Hubbard model with an interaction parameter U . We show that the edge magnetic moment varies as ln U and uncover its dependence on the width W of the ribbon. The physics of this owes its origin to the sensory organ like response of the nanoribbons, demonstrating that considerations beyond the usual Stoner-Landau theory are necessary to understand the magnetism of these systems. A first order magnetic transition from an anti-parallel orientation of the moments on opposite edges to a parallel orientation occurs upon doping with holes or electrons. The critical doping for this transition is shown to depend inversely on the width of the ribbon. Using variational Monte-Carlo calculations, we show that magnetism is robust to fluctuations. Additionally, we show that the magnetic phase diagram is generic to zigzag edge terminated nanostructures such as nanodots. Furthermore, we perform first principles modeling to show how such magnetic transitions can be realized in substituted graphene nanoribbons.Comment: 5 pages, 5 figure

    Field- and pressure-induced magnetic quantum phase transitions in TlCuCl_3

    Full text link
    Thallium copper chloride is a quantum spin liquid of S = 1/2 Cu^2+ dimers. Interdimer superexchange interactions give a three-dimensional magnon dispersion and a spin gap significantly smaller than the dimer coupling. This gap is closed by an applied hydrostatic pressure of approximately 2kbar or by a magnetic field of 5.6T, offering a unique opportunity to explore the both types of quantum phase transition and their associated critical phenomena. We use a bond-operator formulation to obtain a continuous description of all disordered and ordered phases, and thus of the transitions separating these. Both pressure- and field-induced transitions may be considered as the Bose-Einstein condensation of triplet magnon excitations, and the respective phases of staggered magnetic order as linear combinations of dimer singlet and triplet modes. We focus on the evolution with applied pressure and field of the magnetic excitations in each phase, and in particular on the gapless (Goldstone) modes in the ordered regimes which correspond to phase fluctuations of the ordered moment. The bond-operator description yields a good account of the magnetization curves and of magnon dispersion relations observed by inelastic neutron scattering under applied fields, and a variety of experimental predictions for pressure-dependent measurements.Comment: 20 pages, 17 figure

    Satellite holmium M-edge spectra from the magnetic phase via resonant x-ray scattering

    Full text link
    Developing an expression of resonant x-ray scattering (RXS) amplitude which is convenient for investigating the contributions from the higher rank tensor on the basis of a localized electron picture, we analyze the RXS spectra from the magnetic phases of Ho near the M4,5M_{4,5} absorption edges. At the M5M_5 edge in the uniform helical phase, the calculated spectra of the absorption coefficient, the RXS intensities at the first and second satellite spots capture the properties the experimental data possess, such as the spectral shapes and the peak positions. This demonstrates the plausibility of the adoption of the localized picture in this material and the effectiveness of the spectral shape analysis. The latter point is markedly valuable since the azimuthal angle dependence, which is one of the most useful informations RXS can provides, is lacking in the experimental conditions. Then, by focusing on the temperature dependence of the spectral shape at the second satellite spot, we expect that the spectrum is the contribution of the pure rank two profile in the uniform helical and the conical phases while that is dominated by the rank one profile in the intermediate temperature phase, so-called spin slip phase. The change of the spectral shape as a function of temperature indicates a direct evidence of the change of magnetic structures undergoing. Furthermore, we predict that the intensity, which is the same order observed at the second satellite spot, is expected at the fourth satellite spot from the conical phase in the electric dipolar transition.Comment: 24 pages, 5 figure

    The implications of resonant x-ray scattering data on the physics of the insulating phase of V_2O_3

    Full text link
    We have performed a quantitative analysis of recent resonant x-ray scattering experiments carried out in the antiferromagnetic phase of V_2O_3 by means of numerical ab-initio simulations. In order to treat magnetic effects, we have developed a method based on multiple scattering theory (MST) and a relativistic extension of the Schr\"{o}dinger Equation, thereby working with the usual non relativistic set of quantum numbers l,m,σl,m,\sigma for angular and spin momenta. Electric dipole-dipole (E1-E1), dipole-quadrupole (E1-E2) and quadrupole-quadrupole (E2-E2) transition were considered altogether. We obtain satisfactory agreement with experiments, both in energy and azimuthal scans. All the main features of the V K edge Bragg-forbidden reflections with h+k+l=h+k+l=odd can be interpreted in terms of the antiferromagnetic ordering only, {\it ie}, they are of magnetic origin. In particular the ab-initio simulation of the energy scan around the (1,1,1)-monoclinic reflection excludes the possibility of any symmetry reduction due to a time-reversal breaking induced by orbital ordering.Comment: 11 pages, 6 figure

    X-ray Dichroism and the Pseudogap Phase of Cuprates

    Full text link
    A recent polarized x-ray absorption experiment on the high temperature cuprate superconductor Bi2Sr2CaCu2O8 indicates the presence of broken parity symmetry below the temperature, T*, where a pseudogap appears in photoemission. We critically analyze the x-ray data, and conclude that a parity-breaking signal of the kind suggested is unlikely based on the crystal structures reported in the literature. Possible other origins of the observed dichroism signal are discussed. We propose x-ray scattering experiments that can be done in order to determine whether such alternative interpretations are valid or not.Comment: final version to be published in Phys Rev B: some calculational details added, clarification of XNLD contamination and biaxiality, more discussion on possible space groups and previous optics result

    Magnetic edge states

    Full text link
    Magnetic edge states are responsible for various phenomena of magneto-transport. Their importance is due to the fact that, unlike the bulk of the eigenstates in a magnetic system, they carry electric current along the boundary of a confined domain. Edge states can exist both as interior (quantum dot) and exterior (anti-dot) states. In the present report we develop a consistent and practical spectral theory for the edge states encountered in magnetic billiards. It provides an objective definition for the notion of edge states, is applicable for interior and exterior problems, facilitates efficient quantization schemes, and forms a convenient starting point for both the semiclassical description and the statistical analysis. After elaborating these topics we use the semiclassical spectral theory to uncover nontrivial spectral correlations between the interior and the exterior edge states. We show that they are the quantum manifestation of a classical duality between the trajectories in an interior and an exterior magnetic billiard.Comment: 170 pages, 48 figures (high quality version available at http://www.klaus-hornberger.de
    corecore