36 research outputs found

    Quantitative Tverberg theorems over lattices and other discrete sets

    Full text link
    This paper presents a new variation of Tverberg's theorem. Given a discrete set SS of RdR^d, we study the number of points of SS needed to guarantee the existence of an mm-partition of the points such that the intersection of the mm convex hulls of the parts contains at least kk points of SS. The proofs of the main results require new quantitative versions of Helly's and Carath\'eodory's theorems.Comment: 16 pages. arXiv admin note: substantial text overlap with arXiv:1503.0611

    Quantitative Tverberg, Helly, & Carath\'eodory theorems

    Full text link
    This paper presents sixteen quantitative versions of the classic Tverberg, Helly, & Caratheodory theorems in combinatorial convexity. Our results include measurable or enumerable information in the hypothesis and the conclusion. Typical measurements include the volume, the diameter, or the number of points in a lattice.Comment: 33 page

    Quantitative combinatorial geometry for continuous parameters

    Get PDF
    We prove variations of Carath\'eodory's, Helly's and Tverberg's theorems where the sets involved are measured according to continuous functions such as the volume or diameter. Among our results, we present continuous quantitative versions of Lov\'asz's colorful Helly theorem, B\'ar\'any's colorful Carath\'eodory's theorem, and the colorful Tverberg theorem.Comment: 22 pages. arXiv admin note: substantial text overlap with arXiv:1503.0611

    Helly numbers of Algebraic Subsets of Rd\mathbb R^d

    Full text link
    We study SS-convex sets, which are the geometric objects obtained as the intersection of the usual convex sets in Rd\mathbb R^d with a proper subset SRdS\subset \mathbb R^d. We contribute new results about their SS-Helly numbers. We extend prior work for S=RdS=\mathbb R^d, Zd\mathbb Z^d, and Zdk×Rk\mathbb Z^{d-k}\times\mathbb R^k; we give sharp bounds on the SS-Helly numbers in several new cases. We considered the situation for low-dimensional SS and for sets SS that have some algebraic structure, in particular when SS is an arbitrary subgroup of Rd\mathbb R^d or when SS is the difference between a lattice and some of its sublattices. By abstracting the ingredients of Lov\'asz method we obtain colorful versions of many monochromatic Helly-type results, including several colorful versions of our own results.Comment: 13 pages, 3 figures. This paper is a revised version of what was originally the first half of arXiv:1504.00076v

    Quantitative Combinatorial Geometry for Continuous Parameters

    Get PDF
    We prove variations of Carathéodory’s, Helly’s and Tverberg’s theorems where the sets involved are measured according to continuous functions such as the volume or diameter. Among our results, we present continuous quantitative versions of Lovász’s colorful Helly’s theorem, Bárány’s colorful Carathéodory’s theorem, and the colorful Tverberg’s theorem

    Radon numbers grow linearly

    Get PDF
    Define the kk-th Radon number rkr_k of a convexity space as the smallest number (if it exists) for which any set of rkr_k points can be partitioned into kk parts whose convex hulls intersect. Combining the recent abstract fractional Helly theorem of Holmsen and Lee with earlier methods of Bukh, we prove that rkr_k grows linearly, i.e., rkc(r2)kr_k\le c(r_2)\cdot k.Comment: Comments are welcome at: https://wordpress.com/post/domotorp.wordpress.com/76
    corecore