370 research outputs found

    A proof calculus for attack trees in Isabelle

    Get PDF
    Attack trees are an important modeling formalism to identify and quantify attacks on security and privacy. They are very useful as a tool to understand step by step the ways through a system graph that lead to the violation of security policies. In this paper, we present how attacks can be refined based on the violation of a policy. To that end we provide a formal definition of attack trees in Isabelle’s Higher Order Logic: a proof calculus that defines how to refine sequences of attack steps into a valid attack. We use a notion of Kripke semantics as formal foundation that then allows to express attack goals using branching time temporal logic CTL. We illustrate the use of the mechanized Isabelle framework on the example of a privacy attack to an IoT healthcare system

    Automatic Probabilistic Program Verification through Random Variable Abstraction

    Full text link
    The weakest pre-expectation calculus has been proved to be a mature theory to analyze quantitative properties of probabilistic and nondeterministic programs. We present an automatic method for proving quantitative linear properties on any denumerable state space using iterative backwards fixed point calculation in the general framework of abstract interpretation. In order to accomplish this task we present the technique of random variable abstraction (RVA) and we also postulate a sufficient condition to achieve exact fixed point computation in the abstract domain. The feasibility of our approach is shown with two examples, one obtaining the expected running time of a probabilistic program, and the other the expected gain of a gambling strategy. Our method works on general guarded probabilistic and nondeterministic transition systems instead of plain pGCL programs, allowing us to easily model a wide range of systems including distributed ones and unstructured programs. We present the operational and weakest precondition semantics for this programs and prove its equivalence

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Formal verification of tail distribution bounds in the HOL theorem prover

    Get PDF
    Tail distribution bounds play a major role in the estimation of failure probabilities in performance and reliability analysis of systems. They are usually estimated using Markov's and Chebyshev's inequalities, which represent tail distribution bounds for a random variable in terms of its mean or variance. This paper presents the formal verification of Markov's and Chebyshev's inequalities for discrete random variables using a higher-order-logic theorem prover. The paper also provides the formal verification of mean and variance relations for some of the widely used discrete random variables, such as Uniform(m), Bernoulli(p), Geometric(p) and Binomial(m, p) random variables. This infrastructure allows us to precisely reason about the tail distribution properties and thus turns out to be quite useful for the analysis of systems used in safety-critical domains, such as space, medicine or transportation. For illustration purposes, we present the performance analysis of the coupon collector's problem, a well-known commercially used algorithm

    Verification of Probabilistic Properties in HOL using the Cumulative Distribution Function

    Get PDF
    Abstract. Traditionally, computer simulation techniques are used to perform probabilistic analysis. However, they provide inaccurate results and cannot handle large-scale problems due to their enormous CPU time requirements. To overcome these limitations, we propose to complement simulation based tools with higher-order-logic theorem proving so that an integrated approach can provide exact results for the critical sections of the analysis in the most efficient manner. In this paper, we illustrate the practical effectiveness of our idea by verifying numerous probabilistic properties associated with random variables in the HOL theorem prover. Our verification approach revolves around the fact that any probabilistic property associated with a random variable can be verified using the classical Cumulative Distribution Function (CDF) properties, if the CDF relation of that random variable is known. For illustration purposes, we also present the verification of a couple of probabilistic properties, which cannot be evaluated precisely by the existing simulation techniques, associated with the Continuous Uniform random variable in HOL

    Formal methods and digital systems validation for airborne systems

    Get PDF
    This report has been prepared to supplement a forthcoming chapter on formal methods in the FAA Digital Systems Validation Handbook. Its purpose is as follows: to outline the technical basis for formal methods in computer science; to explain the use of formal methods in the specification and verification of software and hardware requirements, designs, and implementations; to identify the benefits, weaknesses, and difficulties in applying these methods to digital systems used on board aircraft; and to suggest factors for consideration when formal methods are offered in support of certification. These latter factors assume the context for software development and assurance described in RTCA document DO-178B, 'Software Considerations in Airborne Systems and Equipment Certification,' Dec. 1992

    Emerging trends proceedings of the 17th International Conference on Theorem Proving in Higher Order Logics: TPHOLs 2004

    Get PDF
    technical reportThis volume constitutes the proceedings of the Emerging Trends track of the 17th International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2004) held September 14-17, 2004 in Park City, Utah, USA. The TPHOLs conference covers all aspects of theorem proving in higher order logics as well as related topics in theorem proving and verification. There were 42 papers submitted to TPHOLs 2004 in the full research cate- gory, each of which was refereed by at least 3 reviewers selected by the program committee. Of these submissions, 21 were accepted for presentation at the con- ference and publication in volume 3223 of Springer?s Lecture Notes in Computer Science series. In keeping with longstanding tradition, TPHOLs 2004 also offered a venue for the presentation of work in progress, where researchers invite discussion by means of a brief introductory talk and then discuss their work at a poster session. The work-in-progress papers are held in this volume, which is published as a 2004 technical report of the School of Computing at the University of Utah

    Using Theorem Proving to Verify Expectation and Variance for Discrete Random Variables

    Get PDF
    Statistical quantities, such as expectation (mean) and variance, play a vital role in the present age probabilistic analysis. In this paper, we present some formalization of expectation theory that can be used to verify the expectation and variance characteristics of discrete random variables within the HOL theorem prover. The motivation behind this is the ability to perform error free probabilistic analysis, which in turn can be very useful for the performance and reliability analysis of systems used in safety-critical domains, such as space travel, medicine and military. We first present a formal definition of expectation of a function of a discrete random variable. Building upon this definition, we formalize the mathematical concept of variance and verify some classical properties of expectation and variance in HOL. We then utilize these formal definitions to verify the expectation and variance characteristics of the Geometric random variable. In order to demonstrate the practical effectiveness of the formalization presented in this paper, we also present the probabilistic analysis of the Coupon Collector’s problem in HOL
    • …
    corecore