514 research outputs found

    A novel approach for treating resistant hypertension using a controlled-pump accumulator relief device

    Get PDF
    Hypertension contributes to cardiovascular morbidity and mortality worldwide. While many hypertensive patients respond to drug therapy, a growing number of these cases are called resistant hypertension (RH), when patients cannot control their blood pressure to goal levels despite the use of multiple antihypertensive medications. While current interventional treatments for RH are based on dealing with the nervous system, there is no existing procedure that considers altering the way in which blood is pumped into the aorta such that to reduce blood pressure. We hypothesize that RH may be controlled by altering the way in which blood is pumped into the aorta. We introduce a novel idea of implementing what we called the accumulator device, which may be classified as a mechanical assist device for the cardiac system. A lumped-parameter model describing the cardiovascular system is presented and validated. The novel idea of accumulator device is also modeled and incorporated with the cardiovascular system model using analogies between the circulatory system, hydraulic systems, and electric circuits. The simulation work of the proposed accumulator device idea reveals promising preliminary results. It shows an ability to significantly decrease the systolic pressure by regulating the way in which blood is pumped into the aorta during the cardiac cycle, without reducing the cardiac output. It is our hope that this novel approach provides a transformational alternative to existing methods for treating RH, becomes a successful treatment option in the future, and improves life for millions of RH patients.Includes bibliographical reference

    Computational fluid dynamics modelling in cardiovascular medicine

    Get PDF
    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length-And time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, populationaveraged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education-And service-related challenges

    A comprehensive and biophysically detailed computational model of the whole human heart electromechanics

    Get PDF
    While ventricular electromechanics is extensively studied, four-chamber heart models have only been addressed recently; most of these works however neglect atrial contraction. Indeed, as atria are characterized by a complex physiology influenced by the ventricular function, developing computational models able to capture the physiological atrial function and atrioventricular interaction is very challenging. In this paper, we propose a biophysically detailed electromechanical model of the whole human heart that considers both atrial and ventricular contraction. Our model includes: i) an anatomically accurate whole-heart geometry; ii) a comprehensive myocardial fiber architecture; iii) a biophysically detailed microscale model for the active force generation; iv) a 0D closed-loop model of the circulatory system; v) the fundamental interactions among the different core models; vi) specific constitutive laws and model parameters for each cardiac region. Concerning the numerical discretization, we propose an efficient segregated-intergrid-staggered scheme and we employ recently developed stabilization techniques that are crucial to obtain a stable formulation in a four-chamber scenario. We are able to reproduce the healthy cardiac function for all the heart chambers, in terms of pressure-volume loops, time evolution of pressures, volumes and fluxes, and three-dimensional cardiac deformation, with unprecedented matching (to the best of our knowledge) with the expected physiology. We also show the importance of considering atrial contraction, fibers-stretch-rate feedback and suitable stabilization techniques, by comparing the results obtained with and without these features in the model. The proposed model represents the state-of-the-art electromechanical model of the iHEART ERC project and is a fundamental step toward the building of physics-based digital twins of the human heart

    A mathematical model that integrates cardiac electrophysiology, mechanics, and fluid dynamics: Application to the human left heart

    Get PDF
    : We propose a mathematical and numerical model for the simulation of the heart function that couples cardiac electrophysiology, active and passive mechanics and hemodynamics, and includes reduced models for cardiac valves and the circulatory system. Our model accounts for the major feedback effects among the different processes that characterize the heart function, including electro-mechanical and mechano-electrical feedback as well as force-strain and force-velocity relationships. Moreover, it provides a three-dimensional representation of both the cardiac muscle and the hemodynamics, coupled in a fluid-structure interaction (FSI) model. By leveraging the multiphysics nature of the problem, we discretize it in time with a segregated electrophysiology-force generation-FSI approach, allowing for efficiency and flexibility in the numerical solution. We employ a monolithic approach for the numerical discretization of the FSI problem. We use finite elements for the spatial discretization of partial differential equations. We carry out a numerical simulation on a realistic human left heart model, obtaining results that are qualitatively and quantitatively in agreement with physiological ranges and medical images
    • …
    corecore