7,340 research outputs found

    Quantitative Information Flow - Verification Hardness and Possibilities

    Full text link

    Quantitative Information Flow as Safety and Liveness Hyperproperties

    Full text link
    We employ Clarkson and Schneider's "hyperproperties" to classify various verification problems of quantitative information flow. The results of this paper unify and extend the previous results on the hardness of checking and inferring quantitative information flow. In particular, we identify a subclass of liveness hyperproperties, which we call "k-observable hyperproperties", that can be checked relative to a reachability oracle via self composition.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    The complexity of verifying loop-free programs as differentially private

    Get PDF
    We study the problem of verifying differential privacy for loop-free programs with probabilistic choice. Programs in this class can be seen as randomized Boolean circuits, which we will use as a formal model to answer two different questions: first, deciding whether a program satisfies a prescribed level of privacy; second, approximating the privacy parameters a program realizes. We show that the problem of deciding whether a program satisfies ε-differential privacy is coNP#P-complete. In fact, this is the case when either the input domain or the output range of the program is large. Further, we show that deciding whether a program is (ε,δ)-differentially private is coNP#P-hard, and in coNP#P for small output domains, but always in coNP#P#P. Finally, we show that the problem of approximating the level of differential privacy is both NP-hard and coNP-hard. These results complement previous results by Murtagh and Vadhan showing that deciding the optimal composition of differentially private components is #P-complete, and that approximating the optimal composition of differentially private components is in P

    Hidden-Markov Program Algebra with iteration

    Full text link
    We use Hidden Markov Models to motivate a quantitative compositional semantics for noninterference-based security with iteration, including a refinement- or "implements" relation that compares two programs with respect to their information leakage; and we propose a program algebra for source-level reasoning about such programs, in particular as a means of establishing that an "implementation" program leaks no more than its "specification" program. This joins two themes: we extend our earlier work, having iteration but only qualitative, by making it quantitative; and we extend our earlier quantitative work by including iteration. We advocate stepwise refinement and source-level program algebra, both as conceptual reasoning tools and as targets for automated assistance. A selection of algebraic laws is given to support this view in the case of quantitative noninterference; and it is demonstrated on a simple iterated password-guessing attack

    Performance-oriented Organisation Modelling

    Get PDF

    Review of the Synergies Between Computational Modeling and Experimental Characterization of Materials Across Length Scales

    Full text link
    With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends where predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure-properties relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanics community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to "simply" support experimental work. This is illustrated by examples from several application areas on structural materials. This manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.Comment: 25 pages, 11 figures, review article accepted for publication in J. Mater. Sc
    corecore