9,783 research outputs found

    The consequences of gene flow for local adaptation and differentiation: A two-locus two-deme model

    Full text link
    We consider a population subdivided into two demes connected by migration in which selection acts in opposite direction. We explore the effects of recombination and migration on the maintenance of multilocus polymorphism, on local adaptation, and on differentiation by employing a deterministic model with genic selection on two linked diallelic loci (i.e., no dominance or epistasis). For the following cases, we characterize explicitly the possible equilibrium configurations: weak, strong, highly asymmetric, and super-symmetric migration, no or weak recombination, and independent or strongly recombining loci. For independent loci (linkage equilibrium) and for completely linked loci, we derive the possible bifurcation patterns as functions of the total migration rate, assuming all other parameters are fixed but arbitrary. For these and other cases, we determine analytically the maximum migration rate below which a stable fully polymorphic equilibrium exists. In this case, differentiation and local adaptation are maintained. Their degree is quantified by a new multilocus version of \Fst and by the migration load, respectively. In addition, we investigate the invasion conditions of locally beneficial mutants and show that linkage to a locus that is already in migration-selection balance facilitates invasion. Hence, loci of much smaller effect can invade than predicted by one-locus theory if linkage is sufficiently tight. We study how this minimum amount of linkage admitting invasion depends on the migration pattern. This suggests the emergence of clusters of locally beneficial mutations, which may form `genomic islands of divergence'. Finally, the influence of linkage and two-way migration on the effective migration rate at a linked neutral locus is explored. Numerical work complements our analytical results

    Diversity and Genetic structure of the Spanish collection of durum wheat (Triticum turgidum L) landraces

    Get PDF
    The objectives of this study were to assess diversity and genetic structure of a collection of Spanish durum wheat (Triticum turgidum L) landraces, using SSRs, DArTs and gliadin-markers, and to correlate the distribution of diversity with geographic and climatic features, as well as agro-morphological traits. A high level of diversity was detected in the genotypes analyzed, which were separated into nine populations with a moderate to great genetic divergence among them. The three subspecies taxa, dicoccon, turgidum and durum, present in the collection, largely determined the clustering of the populations. Genotype variation was lower in dicoccon (one major population) and turgidum (two major populations) than in durum (five major populations). Genetic differentiation by the agro-ecological zone of origin was greater in dicoccon and turgidum than in durum. DArT markers revealed two geographic substructures, east-west for dicoccon and northeast-southwest for turgidum. The ssp. durum had a more complex structure, consisting of seven populations with high intra-population variation. DArT markers allowed the detection of subgroups within some populations, with agro-morphological and gliadin differences, and distinct agro-ecological zones of origin. Two different phylogenetic groups were detected; revealing that some durum populations were more related to ssp. turgidum from northern Spain, while others seem to be more related to durum wheats from North Afric

    MAX: a mechatronic model building environment

    Get PDF
    Abstract: A description is given of the state of the art and the functionality of MAX, an expert system for supporting conceptual design of mechatronic systems. Three model building principles are combined in MAX: – embedding equations in networks: a tight coupling between the graphical model formulation and the underlying equations assists the user in model building and evaluation. – multiple model formulations: one system can be manipulated and inspected simultaneously in multiple formulations (languages). – polymorphic modelling: a submodel definition is divided into a type that defines essential properties, and a specification that defines incidental properties. One type generally has multiple specifications, and types are organised hierarchically inside the library. By means of a simple case study, the utility of these principles is demonstrated. It is shown that MAX is a powerful model building environment that is well adapted to usage by designers.

    Differential Privacy versus Quantitative Information Flow

    Get PDF
    Differential privacy is a notion of privacy that has become very popular in the database community. Roughly, the idea is that a randomized query mechanism provides sufficient privacy protection if the ratio between the probabilities of two different entries to originate a certain answer is bound by e^\epsilon. In the fields of anonymity and information flow there is a similar concern for controlling information leakage, i.e. limiting the possibility of inferring the secret information from the observables. In recent years, researchers have proposed to quantify the leakage in terms of the information-theoretic notion of mutual information. There are two main approaches that fall in this category: One based on Shannon entropy, and one based on R\'enyi's min entropy. The latter has connection with the so-called Bayes risk, which expresses the probability of guessing the secret. In this paper, we show how to model the query system in terms of an information-theoretic channel, and we compare the notion of differential privacy with that of mutual information. We show that the notion of differential privacy is strictly stronger, in the sense that it implies a bound on the mutual information, but not viceversa

    Phenotypic evolution and hidden speciation in Candidula unifasciata ssp. (Helicellinae, Gastropoda) inferred by 16S variation and quantitative shell traits

    Get PDF
    In an effort to link quantitative morphometric information with molecular data on the population level, we have analysed 19 populations of the conchologically variable land snail Candidula unifasciata from across the species range for variation in quantitative shell traits and at the mitochondrial 16S ribosomal (r)DNA locus. In genetic analysis, including 21 additional populations, we observed two fundamental haplotype clades with an average pairwise sequence divergence of 0.209 ± 0.009 between clades compared to 0.017 ± 0.012 within clades, suggesting the presence of two different evolutionary lineages. Integrating additional shell material from the Senckenberg Malacological Collection, a highly significant discriminant analysis on the morphological shell traits with fundamental haplotype clades as grouping variable suggested that the less frequent haplotype corresponds to the described subspecies C. u. rugosiuscula, which we propose to regard as a distinct species. Both taxa were highly subdivided genetically (FST = 0.648 and 0.777 P < 0.001). This was contrasted by the partition of morphological variance, where only 29.6% and 21.9% of the variance were distributed among populations, respectively. In C. unifasciata, no significant association between population pairwise FST estimates and corresponding morphological fixation indices could be detected, indicating independent evolution of the two character sets. Partial least square analysis of environmental factors against shell trait variables in C. u. unifasciata revealed significant correlations between environmental factors and certain quantitative shell traits, whose potential adaptational values are discussed

    Earthquakes: from chemical alteration to mechanical rupture

    Full text link
    In the standard rebound theory of earthquakes, elastic deformation energy is progressively stored in the crust until a threshold is reached at which it is suddenly released in an earthquake. We review three important paradoxes, the strain paradox, the stress paradox and the heat flow paradox, that are difficult to account for in this picture, either individually or when taken together. Resolutions of these paradoxes usually call for additional assumptions on the nature of the rupture process (such as novel modes of deformations and ruptures) prior to and/or during an earthquake, on the nature of the fault and on the effect of trapped fluids within the crust at seismogenic depths. We review the evidence for the essential importance of water and its interaction with the modes of deformations. Water is usually seen to have mainly the mechanical effect of decreasing the normal lithostatic stress in the fault core on one hand and to weaken rock materials via hydrolytic weakening and stress corrosion on the other hand. We also review the evidences that water plays a major role in the alteration of minerals subjected to finite strains into other structures in out-of-equilibrium conditions. This suggests novel exciting routes to understand what is an earthquake, that requires to develop a truly multidisciplinary approach involving mineral chemistry, geology, rupture mechanics and statistical physics.Comment: 44 pages, 1 figures, submitted to Physics Report
    corecore