13,242 research outputs found

    Driving style recognition for intelligent vehicle control and advanced driver assistance: a survey

    Get PDF
    Driver driving style plays an important role in vehicle energy management as well as driving safety. Furthermore, it is key for advance driver assistance systems development, toward increasing levels of vehicle automation. This fact has motivated numerous research and development efforts on driving style identification and classification. This paper provides a survey on driving style characterization and recognition revising a variety of algorithms, with particular emphasis on machine learning approaches based on current and future trends. Applications of driving style recognition to intelligent vehicle controls are also briefly discussed, including experts' predictions of the future development

    A BAYESIAN NETWORK APPROACH TO BATTERY AGING IN ELECTRIC VEHICLE TRANSPORTATION AND GRID INTEGRATION

    Get PDF
    Nowadays, batteries in electric vehicles (EVs) are facing a variety of tasks in their connection to the power grid in addition to the main task, driving. All of these tasks play a very significant role in the battery aging, but they are highly variable due to the change in the driver behavior, grid connection availability and weather conditions. The effect of these external factors in the battery degradation have been studied in literature by mostly deterministic and some stochastic approaches, but limited to specific cases. In this dissertation, first, a large-scale deterministic approach is implemented to evaluate the effect of variations in the EV battery daily tasks. To do so, a software tool named REV-Cycle is developed to simulate the EV powertrain and studied the effect of driving behavior, recharging facilities and timings, grid services and temperature/weather change effects, one by one. However, there are two main problems observed in the deterministic aging evaluation: First, the battery capacity fade factors such as temperature, cycling current, state of charge (SOC) … are dependent to the external variables such as location, vehicle owner’s behavior and availability of the grid connection. Therefore, it is not possible to accurately evaluate the battery degradation with a deterministic model, while its inputs are stochastic. Second, the battery aging factors’ dependency is hierarchical and it is not easy to follow and implement this hierarchy with deterministic models. Therefore, using a hierarchical probabilistic framework is proposed that can better represent the problem and realized that the Bayesian statistics with Markov Chain Monte Carlo (MCMC) can provide the problem solving structure needed for this purpose. A comprehensive hierarchical probabilistic model of the battery capacity fade is proposed using Hierarchical Bayesian Networks (HBN). The model considers all uncertainties of the process including vehicle acceleration and velocity, grid connection for charging and utility services, temperatures and all unseen intermediate variables such as battery power, auxiliary power, efficiencies, etc. and estimates the capacity fade as a probability distribution. Metropolis-Hastings MCMC algorithm is applied to generate the posterior distributions. This modeling approach shows promising result in different case studies and provides more informative evaluation of the battery capacity fade

    Holistic Vehicle Instrumentation for Assessing Driver Driving Styles

    Get PDF
    Nowadays, autonomous vehicles are increasing, and the driving scenario that includes both autonomous and human-driven vehicles is a fact. Knowing the driving styles of drivers in the process of automating vehicles is interest in order to make driving as natural as possible. To this end, this article presents a first approach to the design of a controller for the braking system capable of imitating the different manoeuvres that any driver performs while driving. With this aim, different experimental tests have been carried out with a vehicle instrumented with sensors capable of providing real-time information related to the braking system. The experimental tests consist of reproducing a series of braking manoeuvres at different speeds on a flat floor track following a straight path. The tests distinguish between three types of braking manoeuvre: maintained, progressive and emergency braking, which cover all the driving circumstances in which the braking system may intervene. This article presents an innovative approach to characterise braking types thanks to the methodology of analysing the data obtained by sensors during experimental tests. The characterisation of braking types makes it possible to dynamically classify three driving styles: cautious, normal and aggressive. The proposed classifications allow it possible to identify the driving styles on the basis of the pressure in the hydraulic brake circuit, the force exerted by the driver on the brake pedal, the longitudinal deceleration and the braking power, knowing in all cases the speed of the vehicle. The experiments are limited by the fact that there are no other vehicles, obstacles, etc. in the vehicle's environment, but in this article the focus is exclusively on characterising a driver with methods that use the vehicle's dynamic responses measured by on-board sensors. The results of this study can be used to define the driving style of an autonomous vehicle

    Eco-driving technology for sustainable road transport: A review

    Full text link
    © 2018 Elsevier Ltd Road transport consumes significant quantities of fossil fuel and accounts for a significant proportion of CO2 and pollutant emissions worldwide. The driver is a major and often overlooked factor that determines vehicle performance. Eco-driving is a relatively low-cost and immediate measure to reduce fuel consumption and emissions significantly. This paper reviews the major factors, research methods and implementation of eco-driving technology. The major factors of eco-driving are acceleration/deceleration, driving speed, route choice and idling. Eco-driving training programs and in-vehicle feedback devices are commonly used to implement eco-driving skills. After training or using in-vehicle devices, immediate and significant reductions in fuel consumption and CO2 emissions have been observed with slightly increased travel time. However, the impacts of both methods attenuate over time due to the ingrained driving habits developed over the years. These findings imply the necessity of developing quantitative eco-driving patterns that could be integrated into vehicle hardware so as to generate more constant and uniform improvements, as well as developing more effective and lasting training programs and in-vehicle devices. Current eco-driving studies mainly focus on the fuel savings and CO2 reduction of individual vehicles, but ignore the pollutant emissions and the impacts at network levels. Finally, the challenges and future research directions of eco-driving technology are elaborated

    Quantitative Performance Assessment of LiDAR-based Vehicle Contour Estimation Algorithms for Integrated Vehicle Safety Applications

    Get PDF
    Many nations and organizations are committing to achieving the goal of `Vision Zero\u27 and eliminate road traffic related deaths around the world. Industry continues to develop integrated safety systems to make vehicles safer, smarter and more capable in safety critical scenarios. Passive safety systems are now focusing on pre-crash deployment of restraint systems to better protect vehicle passengers. Current commonly used bounding box methods for shape estimation of crash partners lack the fidelity required for edge case collision detection and advanced crash modeling. This research presents a novel algorithm for robust and accurate contour estimation of opposing vehicles. The presented method is evaluated via a developed framework for key performance metrics and compared to alternative algorithms found in literature
    • …
    corecore