790 research outputs found

    Linear Machines for Long Stroke Applications: a review

    Get PDF
    This document reviews the current state of the art in the linear machine technology. First,the recent advancements in linear induction, switched reluctance and permanent magnet machines arepresented. The ladder slit secondary configuration is identified as an interesting configuration for linearinduction machines. In the case of switched reluctance machines, the mutually-coupled configuration hasbeen found to equate the thrust capability of conventional permanent magnet machines. The capabilities ofthe so called linear primary permanent magnet, viz. switched-flux, flux-reversal, doubly-salient and verniermachines are presented afterwards. A guide of different options to enhance several characteristics of linearmachines is also listed. A qualitative comparison of the capabilities of linear primary permanent magnetmachines is given later, where linear vernier and switched-flux machines are identified as the most interestingconfigurations for long stroke applications. In order to demonstrate the validity of the presented comparison,three machines are selected from the literature, and their capabilities are compared under the same conditionsto a conventional linear permanent magnet machine. It is found that the flux-reversal machines suffer froma very poor power factor, whereas the thrust capability of both vernier and switched-flux machines isconfirmed. However, the overload capability of these machines is found to be substantially lower than theone from the conventional machine. Finally, some different research topics are identified and suggested foreach type of machine

    Flux switching machine design for high-speed geared drives

    Get PDF
    Electrical machines capable of high-speed operation are key technology used in many modern applications, such as gas turbine electrical systems, high-speed fly-wheels, turbochargers, and computer numerical control (CNC) machines. The use of geared high-speed machines to replace low-speed high torque drives has not been adequately researched to-date. The rationale of this thesis is to investigate a candidate high speed machine, namely flux switching machines to be used together with new types of core material with mechanical gearing to deliver high-torque and low speeds. Modern developments in advanced material technology have produced new magnetic materials capable of dealing with high resulting in very low losses in high speed machines. However, such metals typically have low mechanical strength, and they are found to be brittle. In order to manufacture electromechanical device with such new materials, it has to be reinforced with a mechanically strong structure. The use of multiple types of magnetic materials referred as a MMLC has been proposed in this thesis for high-speed machine design. In this research, a generic method using magnetic equivalent circuit to model flux switching machines (FSMs) is investigated. Moreover modeling, based on machine dimensions for multiphase FSMs having any pole and slot number has been introduced. The air-gap permeance modeling to simplify the magnetic circuit calculation of FSMs was also investigated in this thesis. It is shown that the permeability of magnetic material can be adjusted with the use of MMLC material. Using this feature, the FSM mathematical model is used to show the impact on electromagnetic performance using MMLCs and is shown to be beneficial. In order the evaluate the weight benefits of using geared high speed FSMs, the planetary gear systems are studies and their design constraints have been identified. An abstract form of weight estimation for given torque and speed requirements has been developed and validated using commercially available planetary gear specifications. FSMs together with gear boxes have been considered and it is shown that significant weight savings can be achieved at higher diameter and at high speeds

    Milestones, hotspots and trends in the development of electric machines

    Get PDF
    As one of the greatest inventions of human beings, the electric machine (EM) has realized the mutual conversion between electrical energy and mechanical energy, which has essentially led humanity into the age of electrification and greatly promoted the progress and development of human society. This paper will briefly review the development of EMs in the past two centuries, highlighting the historical milestones and investigating the driving force behind it. With the innovation of theory, the progress of materials and the breakthrough of computer science and power electronic devices, the mainstream EM types has been continuously changing since its appearance. This paper will not only summarize the basic operation principle and performance characteristics of traditional EMs, but also that of the emerging types of EMs. Meanwhile, control and drive system, as a non-negligible part of EM system, will be complementarily introduced. Finally, due to the background of global emission reduction, industrial intelligentization and transportation electrification, EM industry will usher again in a golden period of development. Accordingly, several foreseeable future developing trends will be analyzed and summarized

    Design and Application of Electrical Machines

    Get PDF
    Electrical machines are one of the most important components of the industrial world. They are at the heart of the new industrial revolution, brought forth by the development of electromobility and renewable energy systems. Electric motors must meet the most stringent requirements of reliability, availability, and high efficiency in order, among other things, to match the useful lifetime of power electronics in complex system applications and compete in the market under ever-increasing pressure to deliver the highest performance criteria. Today, thanks to the application of highly efficient numerical algorithms running on high-performance computers, it is possible to design electric machines and very complex drive systems faster and at a lower cost. At the same time, progress in the field of material science and technology enables the development of increasingly complex motor designs and topologies. The purpose of this Special Issue is to contribute to this development of electric machines. The publication of this collection of scientific articles, dedicated to the topic of electric machine design and application, contributes to the dissemination of the above information among professionals dealing with electrical machines

    Design and fabrication of a long-life Stirling cycle cooler for space application. Phase 3: Prototype model

    Get PDF
    A second-generation, Stirling-cycle cryocooler (cryogenic refrigerator) for space applications, with a cooling capacity of 5 watts at 65 K, was recently completed. The refrigerator, called the Prototype Model, was designed with a goal of 5 year life with no degradation in cooling performance. The free displacer and free piston of the refrigerator are driven directly by moving-magnet linear motors with the moving elements supported by active magnetic bearings. The use of clearance seals and the absence of outgassing material in the working volume of the refrigerator enable long-life operation with no deterioration in performance. Fiber-optic sensors detect the radial position of the shafts and provide a control signal for the magnetic bearings. The frequency, phase, stroke, and offset of the compressor and expander are controlled by signals from precision linear position sensors (LVDTs). The vibration generated by the compressor and expander is cancelled by an active counter balance which also uses a moving-magnet linear motor and magnetic bearings. The driving signal for the counter balance is derived from the compressor and expander position sensors which have wide bandwidth for suppression of harmonic vibrations. The efficiency of the three active members, which operate in a resonant mode, is enhanced by a magnetic spring in the expander and by gas springs in the compressor and counterbalance. The cooling was achieved with a total motor input power of 139 watts. The magnetic-bearing stiffness was significantly increased from the first-generation cooler to accommodate shuttle launch vibrations

    NOVEL METHODS FOR PERMANENT MAGNET DEMAGNETIZATION DETECTION IN PERMANENT MAGNET SYNCHRONOUS MACHINES

    Get PDF
    Monitoring and detecting PM flux linkage is important to maintain a stable permanent magnet synchronous motor (PMSM) operation. The key problems that need to be solved at this stage are to: 1) establish a demagnetization magnetic flux model that takes into account the influence of various nonlinear and complex factors to reveal the demagnetization mechanism; 2) explore the relationship between different factors and demagnetizing magnetic field, to detect the demagnetization in the early stage; and 3) propose post-demagnetization measures. This thesis investigates permanent magnet (PM) demagnetization detection for PMSM machines to achieve high-performance and reliable machine drive for practical industrial and consumer applications. In this thesis, theoretical analysis, numerical calculation as well as experimental investigations are carried out to systematically study the demagnetization detection mechanism and post-demagnetization measures for permanent magnet synchronous motors. At first a flux based acoustic noise model is proposed to analyze online PM demagnetization detection by using a back propagation neural network (BPNN) with acoustic noise data. In this method, the PM demagnetization is detected by means of comparing the measured acoustic signal of PMSM with an acoustic signal library of seven acoustical indicators. Then torque ripple is chosen for online PM demagnetization diagnosis by using continuous wavelet transforms (CWT) and Grey System Theory (GST). This model is able to reveal the relationship between torque variation and PM electromagnetic interferences. After demagnetization being detected, a current regulation strategy is proposed to minimize the torque ripples induced by PM demagnetization. Next, in order to compare the demagnetization detection accuracy, different data mining techniques, Vold-Kalman filtering order tracking (VKF-OT) and dynamic Bayesian network (DBN) based detection approach is applied to real-time PM flux monitoring through torque ripple again. VKF-OT is introduced to track the order of torque ripple of PMSM running in transient state. Lastly, the combination of acoustic noise and torque is investigated for demagnetization detection by using multi-sensor information fusion to improve the system redundancy and accuracy. Bayesian network based multi-sensor information fusion is then proposed to detect the demagnetization ratio from the extracted features. During the analysis of demagnetization detection methods, the proposed PM detection approaches both form torque ripple and acoustic noise are extensively evaluated on a laboratory PM machine drive system under different speeds, load conditions, and temperatures

    An Assessment of Integrated Flywheel System Technology

    Get PDF
    The current state of the technology in flywheel storage systems and ancillary components, the technology in light of future requirements, and technology development needs to rectify these shortfalls were identified. Technology efforts conducted in Europe and in the United States were reviewed. Results of developments in composite material rotors, magnetic suspension systems, motor/generators and electronics, and system dynamics and control were presented. The technology issues for the various disciplines and technology enhancement scenarios are discussed. A summary of the workshop, and conclusions and recommendations are presented

    Design and Manufacture of a Linear Actuator Based on Magnetic Screw Transmission

    Get PDF
    corecore