15,194 research outputs found

    Brane Calculi Systems: A Static Preview of their Possible Behaviour

    Full text link
    We improve the precision of a previous Control Flow Analysis for Brane Calculi, by adding information on the context and introducing causality information on the membranes. This allows us to prove some biological properties on the behaviour of systems specified in Brane Calculi.Comment: Presented at MeCBIC 201

    Causal interactions and delays in a neuronal ensemble

    Full text link
    We analyze a neural system which mimics a sensorial cortex, with different input characteristics, in presence of transmission delays. We propose a new measure to characterize collective behavior, based on the nonlinear extension of the concept of Granger causality, and an interpretation is given of the variation of the percentage of the causally relevant interactions with transmission delays.Comment: 7 pages, 3 figures. To appear in the AIP seminar notes of 9th Granada seminar on Computational Physics: Computational and Mathematical Modeling of Cooperative Behavior in Neural System

    Membrane Systems and Petri Net Synthesis

    Full text link
    Automated synthesis from behavioural specifications is an attractive and powerful way of constructing concurrent systems. Here we focus on the problem of synthesising a membrane system from a behavioural specification given in the form of a transition system which specifies the desired state space of the system to be constructed. We demonstrate how a Petri net solution to this problem, based on the notion of region of a transition system, yields a method of automated synthesis of membrane systems from state spaces.Comment: In Proceedings MeCBIC 2012, arXiv:1211.347

    Flux Analysis in Process Models via Causality

    Full text link
    We present an approach for flux analysis in process algebra models of biological systems. We perceive flux as the flow of resources in stochastic simulations. We resort to an established correspondence between event structures, a broadly recognised model of concurrency, and state transitions of process models, seen as Petri nets. We show that we can this way extract the causal resource dependencies in simulations between individual state transitions as partial orders of events. We propose transformations on the partial orders that provide means for further analysis, and introduce a software tool, which implements these ideas. By means of an example of a published model of the Rho GTP-binding proteins, we argue that this approach can provide the substitute for flux analysis techniques on ordinary differential equation models within the stochastic setting of process algebras

    Insights into the Second Law of Thermodynamics from Anisotropic Gas-Surface Interactions

    Full text link
    Thermodynamic implications of anisotropic gas-surface interactions in a closed molecular flow cavity are examined. Anisotropy at the microscopic scale, such as might be caused by reduced-dimensionality surfaces, is shown to lead to reversibility at the macroscopic scale. The possibility of a self-sustaining nonequilibrium stationary state induced by surface anisotropy is demonstrated that simultaneously satisfies flux balance, conservation of momentum, and conservation of energy. Conversely, it is also shown that the second law of thermodynamics prohibits anisotropic gas-surface interactions in "equilibrium", even for reduced dimensionality surfaces. This is particularly startling because reduced dimensionality surfaces are known to exhibit a plethora of anisotropic properties. That gas-surface interactions would be excluded from these anisotropic properties is completely counterintuitive from a causality perspective. These results provide intriguing insights into the second law of thermodynamics and its relation to gas-surface interaction physics.Comment: 28 pages, 11 figure
    corecore