2,294 research outputs found

    Microglia shape presynaptic properties at developing glutamatergic synapses

    Get PDF
    Deficient neuron-microglia signaling during brain development is associated with abnormal synaptic maturation. However, the precise impact of deficient microglia function on synaptic maturation and the mechanisms involved remain poorly defined. Here we report that mice defective in neuron-to-microglia signaling via the fractalkine receptor (Cx3cr1 KO) show reduced microglial branching and altered motility and develop widespread deficits in glutamatergic neurotransmission. We characterized the functional properties of CA3-CA1 synapses in hippocampal slices from these mice and found that they display altered glutamatergic release probability, maintaining immature properties also at late developmental stages. In particular, CA1 synapses of Cx3cr1 KO show (i) immature AMPA/NMDA ratio across developmental time, displaying a normal NMDA component and a defective AMPA component of EPSC; (ii) defective functional connectivity, as demonstrated by reduced current amplitudes in the input/output curve; and (iii) greater facilitation in the paired pulse ratio (PPR), suggesting decreased release probability. In addition, minimal stimulation experiments revealed that excitatory synapses have normal potency, but an increased number of failures, confirming a deficit in presynaptic release. Consistently, KO mice were characterized by higher number of silent synapses in comparison to WT. The presynaptic deficits were corrected by performing experiments in conditions of high release probability (Ca2+ /Mg2+ ratio 8), where excitatory synapses showed normal synaptic multiplicity, AMPA/NMDA ratio, and proportion of silent synapses. These results establish that neuron-microglia interactions profoundly influence the functional maturation of excitatory presynaptic function

    Financing choices of firms in EU accession countries

    Get PDF
    The paper presents evidence of actual and target capital structures of firms in five EU accession countries of Central and Eastern Europe and the former Soviet Union (Bulgaria, the Czech Republic, Poland, Romania and Estonia). We consider the financial constraints of private companies and compare the level of indebtedness and the determinants firms’ choices of capital structure in selected EU accession countries and EU countries. A dynamic non-linear adjustment model is adopted to explicitly model the adjustment of a firm’s leverage to a target leverage.

    Gravin orchestrates protein kinase A and 2-adrenergic receptor signaling critical for synaptic plasticity and memory

    Get PDF
    A kinase-anchoring proteins (AKAPs) organize compartmentalized pools of protein kinase A (PKA) to enable localized signaling events within neurons. However, it is unclear which of the many expressed AKAPs in neurons target PKA to signaling complexes important for long-lasting forms of synaptic plasticity and memory storage. In the forebrain, the anchoring protein gravin recruits a signaling complex containing PKA, PKC, calmodulin, and PDE4D (phosphodiesterase 4D) to the β2-adrenergic receptor. Here, we show that mice lacking the α-isoform of gravin have deficits in PKA-dependent long-lasting forms of hippocampal synaptic plasticity including β2-adrenergic receptor-mediated plasticity, and selective impairments of long-term memory storage. Furthermore, both hippocampal β2-adrenergic receptor phosphorylation by PKA, and learning-induced activation of ERK in the CA1 region of the hippocampus are attenuated in mice lacking gravin-α. We conclude that gravin compartmentalizes a significant pool of PKA that regulates learning-induced β2-adrenergic receptor signaling and ERK activation in the hippocampus in vivo, thereby organizing molecular interactions between glutamatergic and noradrenergic signaling pathways for long-lasting synaptic plasticity, and memory storage

    Changes in concentrations of NMDA receptor subunit GluN2B, Arc and syntaxin-1 in dorsal hippocampus Schaffer collateral synapses in a rat learned helplessness model of depression

    Get PDF
    Major depressive disorder involves changes in synaptic structure and function, but the molecular underpinnings of these changes are still not established. In an initial pilot experiment, whole-brain synaptosome screening with quantitative western blotting was performed to identify synaptic proteins that may show concentration changes in a congenital rat learned helplessness model of depression. We found that the N-methyl-D-aspartate receptor (NMDAR) subunits GluN2A/GluN2B, activityregulated cytoskeleton-associated protein (Arc) and syntaxin-1 showed significant concentration differences between congenitally learned helpless (LH) and nonlearned helpless (NLH) rats. Having identified these three proteins, we then performed more elaborate quantitative immunogold electron microscopic analyses of the proteins in a specific synapse type in the dorsal hippocampus: the Schaffer collateral synapse in the CA1 region. We expanded the setup to include also unstressed wild-type (WT) rats. The concentrations of the proteins in the LH and NLH groups were compared to WT animals. In this specific synapse, we found that the concentration of NMDARs was increased in postsynaptic spines in both LH and NLH rats. The concentration of Arc was significantly increased in postsynaptic densities in LH animals as well as in presynaptic cytoplasm of NLH rats. The concentration of syntaxin-1 was significantly increased in both presynaptic terminals and postsynaptic spines in LH animals, while pre- and postsynaptic syntaxin-1 concentrations were significantly decreased in NLH animals. These protein changes suggest pathways by which synaptic plasticity may be increased in dorsal hippocampal Schaffer collateral synapses during depression, corresponding to decreased synaptic stability.publishedVersio
    • …
    corecore