25 research outputs found

    NASA's Black Marble Product Suite: Validation Strategy

    Get PDF
    NASA's Black Marble nighttime lights product suite (VNP46) is available at 500m resolution since January 2012 with data fro the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Platform (SNPP). The retrieval algorithm, developed and implemented for routine global processing at NASA's Land Science Investigator-led Processing System (SIPS), utilizes all high-quality, cloud-free, atmospheric-terrain, vegetation, snow, lunar and stray light corrected radiances to estimate daily nighttime lights (NTL) and other intrinsic surface optical properties. Extensive benchmark tests at representative spatial and temporal scales were conducted on the VNP46 time series record to characterize the uncertainties stemming from upstream data sources. Current and planned validation activities under the Group on Earth Observations (GEO) Human Planet Initiative are aimed at evaluating the products at difference geographic locations and time periods representing the full range of retrieval conditions

    Preliminary Study of JPSS-1/NOAA-20 VIIRS Day-Night Band Straylight Characterization and Correction Methods

    Get PDF
    The JPSS-1 (now named NOAA-20) VIIRS instrument has successfully operated since its launch in November 18, 2017. A panchromatic channel onboard NOAA-20 VIIRS is called the day-night band (DNB). With its large dynamic range and high sensitivity, the DNB detectors can make observations during both daytime and nighttime. However, the DNB night image quality is affected by the straylight contamination. In this study, we focused on Earth view data in the midto-high latitude of the northern and southern hemispheres when spacecraft is crossing the day/night terminators at the beginning of NOAA-20 mission. Based on on-orbit data analysis from previous VIIRS sensor onboard S-NPP mission, straylight contamination mainly depends on the Earth-Sun-spacecraft geometry, and it is also detector and scan-angle dependent. Inter-comparison investigation of straylight behavior in both SNPP and NOAA-20 instruments will be conducted to better understand straylight characteristics. The preliminary study has been performed in this paper to mitigate straylight contamination for NOAA-20VIIRS DNB night images. The effectiveness of the straylight correction algorithm, directly adapted from the S-NPP DNB, is assessed for night images in the day/night terminators. Further work has been identified to improve current straylight correction methodology and DNB-based environmental data products.NOAA-20

    Monitoring transition: expected night sky brightness trends in different photometric bands

    Get PDF
    Several light pollution indicators are commonly used to monitor the effects of the transition from outdoor lighting systems based on traditional gas-discharge lamps to solid-state light sources. In this work we analyze a subset of these indicators, including the artificial zenithal night sky brightness in the visual photopic and scotopic bands, the brightness in the specific photometric band of the widely used Sky Quality Meter (SQM), and the top-of-atmosphere radiance detected by the VIIRS-DNB radiometer onboard the satellite Suomi-NPP. Using a single-scattering approximation in a layered atmosphere we quantitatively show that, depending on the transition scenarios, these indicators may show different, even opposite behaviors. This is mainly due to the combined effects of the changes in the sources' spectra and angular radiation patterns, the wavelength- dependent atmospheric propagation processes and the differences in the detector spectral sensitivity bands. It is suggested that the possible presence of this differential behavior should be taken into account when evaluating light pollution indicator datasets for assessing the outcomes of public policy decisions regarding the upgrading of outdoor lighting systems.info:eu-repo/semantics/publishedVersio

    Multisensor Characterization of Urban Morphology and Network Structure

    Get PDF
    The combination of decameter resolution Sentinel 2 and hectometer resolution VIIRS offers the potential to quantify urban morphology at scales spanning the range from individual objects to global scale settlement networks. Multi-season spectral characteristics of built environments provide an independent complement to night light brightness compared for 12 urban systems. High fractions of spectrally stable impervious surface combined with persistent deep shadow between buildings are compared to road network density and outdoor lighting inferred from night light. These comparisons show better spatial agreement and more detailed representation of a wide range of built environments than possible using Landsat and DMSP-OLS. However, they also show that no single low luminance brightness threshold provides optimal spatial correlation to built extent derived from Sentinel in different urban systems. A 4-threshold comparison of 6 regional night light networks shows consistent spatial scaling, spanning 3 to 5 orders of magnitude in size and number with rank-size slopes consistently near −1. This scaling suggests a dynamic balance among the processes of nucleation, growth and interconnection. Rank-shape distributions based on √Area/Perimeter of network components scale similarly to rank-size distributions at higher brightness thresholds, but show both progressive then abrupt increases in fractal dimension of the largest, most interconnected network components at lower thresholds

    Fast Fourier-transform calculation of artificial night sky brightness maps

    Get PDF
    Light pollution poses a growing threat to optical astronomy, in addition to its detrimental impacts on the natural environment, the intangible heritage of humankind related to the contemplation of the starry sky and, potentially, on human health. The computation of maps showing the spatial distribution of several light pollution related functions (e.g. the anthropogenic zenithal night sky brightness, or the average brightness of the celestial hemisphere) is a key tool for light pollution monitoring and control, providing the scientific rationale for the adoption of informed decisions on public lighting and astronomical site preservation. The calculation of such maps from satellite radiance data for wide regions of the planet with sub-kilometric spatial resolution often implies a huge amount of basic pixel operations, requiring in many cases extremely large computation times. In this paper we show that, using adequate geographical projections, a wide set of light pollution map calculations can be reframed in terms of two-dimensional convolutions that can be easily evaluated using conventional fast Fourier-transform (FFT) algorithms, with typical computation times smaller than 10^-6 s per output pixel.info:eu-repo/semantics/publishedVersio

    Nighttime Lights as a Proxy for Economic Performance of Regions

    Get PDF
    Studying and managing regional economic development in the current globalization era demands prompt, reliable, and comparable estimates for a region’s economic performance. Night-time lights (NTL) emitted from residential areas, entertainment places, industrial facilities, etc., and captured by satellites have become an increasingly recognized proxy for on-ground human activities. Compared to traditional indicators supplied by statistical offices, NTLs may have several advantages. First, NTL data are available all over the world, providing researchers and official bodies with the opportunity to obtain estimates even for regions with extremely poor reporting practices. Second, in contrast to non-standardized traditional reporting procedures, the unified NTL data remove the problem of inter-regional comparability. Finally, NTL data are currently globally available on a daily basis, which makes it possible to obtain these estimates promptly. In this book, we provide the reader with the contributions demonstrating the potential and efficiency of using NTL data as a proxy for the performance of regions

    Remote sensing of night lights: a review and an outlook for the future

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordRemote sensing of night light emissions in the visible band offers a unique opportunity to directly observe human activity from space. This has allowed a host of applications including mapping urban areas, estimating population and GDP, monitoring disasters and conflicts. More recently, remotely sensed night lights data have found use in understanding the environmental impacts of light emissions (light pollution), including their impacts on human health. In this review, we outline the historical development of night-time optical sensors up to the current state of the art sensors, highlight various applications of night light data, discuss the special challenges associated with remote sensing of night lights with a focus on the limitations of current sensors, and provide an outlook for the future of remote sensing of night lights. While the paper mainly focuses on space borne remote sensing, ground based sensing of night-time brightness for studies on astronomical and ecological light pollution, as well as for calibration and validation of space borne data, are also discussed. Although the development of night light sensors lags behind day-time sensors, we demonstrate that the field is in a stage of rapid development. The worldwide transition to LED lights poses a particular challenge for remote sensing of night lights, and strongly highlights the need for a new generation of space borne night lights instruments. This work shows that future sensors are needed to monitor temporal changes during the night (for example from a geostationary platform or constellation of satellites), and to better understand the angular patterns of light emission (roughly analogous to the BRDF in daylight sensing). Perhaps most importantly, we make the case that higher spatial resolution and multispectral sensors covering the range from blue to NIR are needed to more effectively identify lighting technologies, map urban functions, and monitor energy use.European Union Horizon 2020Helmholtz AssociationNatural Environment Research Council (NERC)Chinese Academy of ScienceLeibniz AssociationIGB Leibniz Institut

    Photons without borders: quantifying light pollution transfer between territories

    Get PDF
    The light pollution levels experienced at any given site generally depend on a wide number of artificial light sources distributed throughout the surrounding territory. Since photons can travel long distances before being scattered by the atmosphere, any effective proposal for reducing local light pollution levels needs an accurate assessment of the relative weight of all intervening light sources, including those located tens or even hundreds of km away. In this paper we describe several ways of quantifying and visualizing these relative weights. Particular emphasis is made on the aggregate contribution of the municipalities, which are -in many regions of the world- the administrative bodies primarily responsible for the planning and maintenance of public outdoor lighting system
    corecore