117 research outputs found

    ATR-FTIR Spectroscopy-Linked Chemometrics:A Novel Approach to the Analysis and Control of the Invasive Species Japanese Knotweed

    Get PDF
    Japanese knotweed (Reynoutria japonica), an invasive plant species, causes negative environmental and socio-economic impacts. A female clone in the United Kingdom, its extensive rhizome system enables rapid vegetative spread. Plasticity permits this species to occupy a broad geographic range and survive harsh abiotic conditions. It is notoriously difficult to control with traditional management strategies, which include repetitive herbicide application and costly carbon-intensive rhizome excavation. This problem is complicated by crossbreeding with the closely related species, Giant knotweed (Reynoutria sachalinensis), to give the more vigorous hybrid, Bohemian knotweed (Fallopia x Bohemica) which produces viable seed. These species, hybrids, and backcrosses form a morphologically similar complex known as Japanese knotweed ‘sensu lato’ and are often misidentified. The research herein explores the opportunities offered by advances in the application of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy-linked chemometrics within plant sciences, for the identification and control of knotweed, to enhance our understanding of knotweed biology, and the potential of this technique. ATR-FTIR spectral profiles of Japanese knotweed leaf material and xylem sap samples, which include important biological absorptions due to lipids, proteins, carbohydrates, and nucleic acids, were used to: identify plants from different growing regions highlighting the plasticity of this clonal species; differentiate between related species and hybrids; and predict key physiological characteristics such as hormone concentrations and root water potential. Technical advances were made for the application of ATR-FTIR spectroscopy to plant science, including definition of the environmental factors that exert the most significant influence on spectral profiles, evaluation of sample preparation techniques, and identification of key wavenumbers for prediction of hormone concentrations and abiotic stress. The presented results cement the position of concatenated mid-infrared spectroscopy and machine learning as a powerful approach for the study of plant biology, extending its reach beyond the field of crop science to demonstrate a potential for the discrimination between and control of invasive plant species

    Investigating the effects of organic pollutants on amphibian populations in the UK

    Get PDF
    Amphibians are undergoing dramatic population declines, with environmental pollution reported as a significant factor in such declines. Technologies are required that are able to monitor populations at risk of deteriorating environmental quality in a rapid, high-throughput and low-cost manner. The application of biospectroscopy in environmental monitoring represents such a scenario. Biospectroscopy is based on the vibrations of functional groups within biological samples and may be used to signature effects induced by chemicals in cells and tissues. Here, attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy in conjunction with multivariate analysis was implemented in order to distinguish between embryos, whole tadpoles at an early stage of development and individual tissues of late-stage tadpoles of the common frog collected from ponds in the UK with varying levels of water quality, due to contamination from both urban and agricultural sources. In addition, a Xenopus laevis cell line was exposed to low-levels of fungicides used in agriculture and assessed with ATR-FTIR spectroscopy. Embryos, in general did not represent a sensitive life stage for discriminating between ponds based on their infrared spectra. In contrast, tadpoles exposed to agricultural and urban pollutants, both at early and late stages of development were readily distinguished on the basis of their infrared spectra. ATR-FTIR spectroscopy also readily detected fungicideinduced changes in X.laevis cells, both as single-agent and binary mixture effects. Data reported in this study confirm the use of ATR-FTIR spectroscopy as a sensitive technique capable of detecting small changes in cellular groups, and as such represents a valuable starting point for its use in the monitoring of amphibian populations. However further research is needed in order to overcome confounding factors existent in natural populations of complex organisms

    Past and future of plant stress detection: an overview from remote sensing to Positron Emission Tomography

    Get PDF
    Plant stress detection is considered one of the most critical areas for the improvement of crop yield in the compelling worldwide scenario, dictated by both the climate change and the geopolitical consequences of the Covid-19 epidemics. A complicated interconnection of biotic and abiotic stressors affect plant growth, including water, salt, temperature, light exposure, nutrients availability, agrochemicals, air and soil pollutants, pests and diseases. In facing this extended panorama, the technology choice is manifold. On the one hand, quantitative methods, such as metabolomics, provide very sensitive indicators of most of the stressors, with the drawback of a disruptive approach, which prevents follow up and dynamical studies. On the other hand qualitative methods, such as fluorescence, thermography and VIS/NIR reflectance, provide a non-disruptive view of the action of the stressors in plants, even across large fields, with the drawback of a poor accuracy. When looking at the spatial scale, the effect of stress may imply modifications from DNA level (nanometers) up to cell (micrometers), full plant (millimeters to meters) and entire field (kilometers). While quantitative techniques are sensitive to the smallest scales, only qualitative approaches can be used for the larger ones. Emerging technologies from nuclear and medical physics, such as computed tomography, magnetic resonance imaging and positron emission tomography, are expected to bridge the gap of quantitative non disruptive morphologic and functional measurements at larger scale. In this review we analyze the landscape of the different technologies nowadays available, showing the benefits of each approach in plant stress detection, with a particular focus on the gaps, which will be filled in the nearby future by the emerging nuclear physics approaches to agriculture

    Incorporating standardised drift-tube ion mobility to enhance non-targeted assessment of the wine metabolome (LC×IM-MS)

    Get PDF
    Liquid chromatography with drift-tube ion mobility spectrometry-mass spectrometry (LCxIM-MS) is emerging as a powerful addition to existing LC-MS workflows for addressing a diverse range of metabolomics-related questions [1,2]. Importantly, excellent precision under repeatability and reproducibility conditions of drift-tube IM separations [3] supports the development of non-targeted approaches for complex metabolome assessment such as wine characterisation [4]. In this work, fundamentals of this new analytical metabolomics approach are introduced and application to the analysis of 90 authentic red and white wine samples originating from Macedonia is presented. Following measurements, intersample alignment of metabolites using non-targeted extraction and three-dimensional alignment of molecular features (retention time, collision cross section, and high-resolution mass spectra) provides confidence for metabolite identity confirmation. Applying a fingerprinting metabolomics workflow allows statistical assessment of the influence of geographic region, variety, and age. This approach is a state-of-the-art tool to assess wine chemodiversity and is particularly beneficial for the discovery of wine biomarkers and establishing product authenticity based on development of fingerprint libraries

    High-throughput field phenotyping in cereals and implications in plant ecophysiology

    Get PDF
    [eng] Global climate change effects on agroecosystems together with increasing world population is already threatening food security and endangering ecosystem stability. Meet global food demand with crops production under climate change scenario is the core challenge in plant research nowadays. Thus, there is an urgent need to better understand the underpinning mechanisms of plant acclimation to stress conditions contributing to obtain resilient crops. Also, it is essential to develop new methods in plant research that permit to better characterize non-destructively plant traits of interest. In this sense, the advance in plant phenotyping research by high throughput systems is key to overcome these challenges, while its verification in the field may clear doubts on its feasibility. To this aim, this thesis focused on wheat and secondarily on maize as study species as they make up the major staple crops worldwide. A large panoply of phenotyping methods was employed in these works, ranging from RGB and hyperspectral sensing to metabolomic characterization, besides of other more conventional traits. All research was performed with trials grown in the field and diverse stressor conditions representative of major constrains for plant growth and production were studied: water stress, nitrogen deficiency and disease stress. Our results demonstrated the great potential of leave-to-canopy color traits captured by RGB sensors for in-field phenotyping, as they were accurate and robust indicators of grain yield in wheat and maize under disease and nitrogen deficiency conditions and of leaf nitrogen concentration in maize. On the other hand, the characterization of the metabolome of wheat tissues contributed to elucidate the metabolic mechanisms triggered by water stress and their relationship with high yielding performance, providing some potential biomarkers for higher yields and stress adaptation. Spectroscopic studies in wheat highlighted that leaf dorsoventrality may affect more than water stress on the reflected spectrum and consequently the performance of the multispectral/hyperspectral approaches to assess yield or any other relevant phenotypic trait. Anatomy, pigments and water changes were responsible of reflectance differences and the existence of leaf-side-specific responses were discussed. Finally, the use of spectroscopy for the estimation of the metabolite profiles of wheat organs showed promising for many metabolites which could pave the way for a new generation phenotyping. We concluded that future phenotyping may benefit from these findings in both the low-cost and straightforward methods and the more complex and frontier technologies.[cat] Els efectes del canvi climàtic sobre els agro-ecosistemes i l’increment de la població mundial posa en risc la seguretat alimentària i l’estabilitat dels ecosistemes. Actualment, satisfer les demandes de producció d’aliments sota l’escenari del canvi climàtic és el repte central a la Biologia Vegetal. Per això, és indispensable entendre els mecanismes subjacents de l’aclimatació a l’estrès que permeten obtenir cultius resilients. També és precís desenvolupar nou mètodes de recerca que permetin caracteritzar de manera no destructiva els trets d’interès. L’avenç del fenotipat vegetal amb sistemes d’alt rendiment és clau per abordar aquests reptes. La present tesi s’enfoca en el blat i secundàriament en el panís com a espècies d’estudi ja que constitueixen els cultius bàsics arreu del món. Un ampli ventall de mètodes de fenotipat s’han utilitzat, des sensors RGB a híper-espectrals fins a la caracterització metabolòmica. La recerca s’ha dut a terme en assajos de camp i s’han avaluat diversos tipus d’estrès representatius de les majors limitacions pel creixement i producció vegetal: estrès hídric i biòtic i deficiència de nitrogen. Els resultats demostraren el gran potencial dels trets del color RGB (des de la planta a la capçada) pel fenotipat de camp, ja que foren indicadors precisos del rendiment a blat i panís sota condicions de malaltia i deficiència de nitrogen i de la concentració de nitrogen foliar a panís. La caracterització metabolòmica de teixits de blat contribuí a esbrinar els processos metabòlics endegats per l’estrès hídric i la seva relació amb comportament genotípic, proporcionant bio-marcadors potencials per rendiments més alts i l’adaptació a l’estrès. Estudis espectroscòpics en blat van demostrar que la dorsoventralitat pot afectar més que l’estrès hídric sobre l’espectre de reflectància i consegüentment sobre el comportament de les aproximacions multi/híper-espectrals per avaluar el rendiment i d’altres trets fenotípics com anatòmics i contingut de pigments. Finalment, l’ús de l’espectroscòpia per l’estimació del contingut metabòlic als teixits de blat resulta prometedor per molts metabòlits, la qual cosa obre les portes per a un fenotipat de nova generació. El fenotipat pot beneficiar-se d’aquestes troballes, tant en els mètodes de baix cost com de les tecnologies més sofisticades i d’avantguarda
    • …
    corecore