53 research outputs found

    Enriching remote labs with computer vision and drones

    Get PDF
    165 p.With the technological advance, new learning technologies are being developed in order to contribute to better learning experience. In particular, remote labs constitute an interesting and a practical way that can motivate nowadays students to learn. The studen can at anytime, and from anywhere, access the remote lab and do his lab-work. Despite many advantages, remote tecnologies in education create a distance between the student and the teacher. Without the presence of a teacher, students can have difficulties, if no appropriate interventions can be taken to help them. In this thesis, we aim to enrich an existing remote electronic lab made for engineering students called "LaboREM" (for remote Laboratory) in two ways: first we enable the student to send high level commands to a mini-drone available in the remote lab facility. The objective is to examine the front panels of electronic measurement instruments, by the camera embedded on the drone. Furthermore, we allow remote student-teacher communication using the drone, in case there is a teacher present in the remote lab facility. Finally, the drone has to go back home when the mission is over to land on a platform for automatic recharge of the batteries. Second, we propose an automatic system that estimates the affective state of the student (frustrated/confused/flow) in order to take appropriate interventions to ensure good learning outcomes. For example, if the studen is having major difficulties we can try to give him hints or to reduce the difficulty level of the lab experiment. We propose to do this by using visual cues (head pose estimation and facil expression analysis). Many evidences on the state of the student can be acquired, however these evidences are incomplete, sometims inaccurate, and do not cover all the aspects of the state of the student alone. This is why we propose to fuse evidences using the theory of Dempster-Shafer that allows the fusion of incomplete evidence

    Enriching remote labs with computer vision and drones

    Get PDF
    165 p.With the technological advance, new learning technologies are being developed in order to contribute to better learning experience. In particular, remote labs constitute an interesting and a practical way that can motivate nowadays students to learn. The studen can at anytime, and from anywhere, access the remote lab and do his lab-work. Despite many advantages, remote tecnologies in education create a distance between the student and the teacher. Without the presence of a teacher, students can have difficulties, if no appropriate interventions can be taken to help them. In this thesis, we aim to enrich an existing remote electronic lab made for engineering students called "LaboREM" (for remote Laboratory) in two ways: first we enable the student to send high level commands to a mini-drone available in the remote lab facility. The objective is to examine the front panels of electronic measurement instruments, by the camera embedded on the drone. Furthermore, we allow remote student-teacher communication using the drone, in case there is a teacher present in the remote lab facility. Finally, the drone has to go back home when the mission is over to land on a platform for automatic recharge of the batteries. Second, we propose an automatic system that estimates the affective state of the student (frustrated/confused/flow) in order to take appropriate interventions to ensure good learning outcomes. For example, if the studen is having major difficulties we can try to give him hints or to reduce the difficulty level of the lab experiment. We propose to do this by using visual cues (head pose estimation and facil expression analysis). Many evidences on the state of the student can be acquired, however these evidences are incomplete, sometims inaccurate, and do not cover all the aspects of the state of the student alone. This is why we propose to fuse evidences using the theory of Dempster-Shafer that allows the fusion of incomplete evidence

    Video Analysis in Indoor Soccer with a Quadcopter

    Get PDF

    Vision-based automatic landing of a rotary UAV

    Get PDF
    A hybrid-like (continuous and discrete-event) approach to controlling a small multi-rotor unmanned aerial system (UAS) while landing on a moving platform is described. The landing scheme is based on positioning visual markers on a landing platform in a detectable pattern. After the onboard camera detects the object pattern, the inner control algorithm sends visual-based servo-commands to align the multi-rotor with the targets. This method is less computationally complex as it uses color-based object detection applied to a geometric pattern instead of feature tracking algorithms, and has the advantage of not requiring the distance to the objects to be calculated. The continuous approach accounts for the UAV and the platform rolling/pitching/yawing, which is essential for a real-time landing on a moving target such as a ship. A discrete-event supervisor working in parallel with the inner controller is designed to assist the automatic landing of a multi-rotor UAV on a moving target. This supervisory control strategy allows the pilot and crew to make time-critical decisions when exceptions, such as losing targets from the field of view, occur. The developed supervisor improves the low-level vision-based auto-landing system and high-level human-machine interface. The proposed hybrid-like approach was tested in simulation using a quadcopter model in Virtual Robotics Experimentation Platform (V-REP) working in parallel with Robot Operating System (ROS). Finally, this method was validated in a series of real-time experiments with indoor and outdoor quadcopters landing on both static and moving platforms. The developed prototype system has demonstrated the capability of landing within 25 cm of the desired point of touchdown. This auto-landing system is small (100 x 100 mm), light-weight (100 g), and consumes little power (under 2 W)

    A Large Scale Inertial Aided Visual Simultaneous Localization And Mapping (SLAM) System For Small Mobile Platforms

    Get PDF
    In this dissertation we present a robust simultaneous mapping and localization scheme that can be deployed on a computationally limited, small unmanned aerial system. This is achieved by developing a key frame based algorithm that leverages the multiprocessing capacity of modern low power mobile processors. The novelty of the algorithm lies in the design to make it robust against rapid exploration while keeping the computational time to a minimum. A novel algorithm is developed where the time critical components of the localization and mapping system are computed in parallel utilizing the multiple cores of the processor. The algorithm uses a scale and rotation invariant state of the art binary descriptor for landmark description making it suitable for compact large scale map representation and robust tracking. This descriptor is also used in loop closure detection making the algorithm efficient by eliminating any need for separate descriptors in a Bag of Words scheme. Effectiveness of the algorithm is demonstrated by performance evaluation in indoor and large scale outdoor dataset. We demonstrate the efficiency and robustness of the algorithm by successful six degree of freedom (6 DOF) pose estimation in challenging indoor and outdoor environment. Performance of the algorithm is validated on a quadcopter with onboard computation

    Development of a smart weed detector and selective herbicide sprayer

    Get PDF
    Abstract: The fourth industrial revolution has brought about tremendous advancements in various sectors of the economy including the agricultural domain. Aimed at improving food production and alleviating poverty, these technological advancements through precision agriculture has ushered in optimized agricultural processes, real-time analysis and monitoring of agricultural data. The detrimental effects of applying agrochemicals in large or hard-to-reach farmlands and the need to treat a specific class of weed with a particular herbicide for effective weed elimination gave rise to the necessity of this research work...M.Ing. (Mechanical Engineering

    Multi-robot Collaborative Visual Navigation with Micro Aerial Vehicles

    Get PDF
    Micro Aerial Vehicles (MAVs), particularly multi-rotor MAVs have gained significant popularity in the autonomous robotics research field. The small size and agility of these aircraft makes them safe to use in contained environments. As such MAVs have numerous applications with respect to both the commercial and research fields, such as Search and Rescue (SaR), surveillance, inspection and aerial mapping. In order for an autonomous MAV to safely and reliably navigate within a given environment the control system must be able to determine the state of the aircraft at any given moment. The state consists of a number of extrinsic variables such as the position, velocity and attitude of the MAV. The most common approach for outdoor operations is the Global Positioning System (GPS). While GPS has been widely used for long range navigation in open environments, its performance degrades significantly in constrained environments and is unusable indoors. As a result state estimation for MAVs in such constrained environments is a popular and exciting research area. Many successful solutions have been developed using laser-range finder sensors. These sensors provide very accurate measurements at the cost of increased power and weight requirements. Cameras offer an attractive alternative state estimation sensor; they offer high information content per image coupled with light weight and low power consumption. As a result much recent work has focused on state estimation on MAVs where a camera is the only exteroceptive sensor. Much of this recent work focuses on single MAVs, however it is the author's belief that the full potential and benefits of the MAV platform can only be realised when teams of MAVs are able to cooperatively perform tasks such as SaR or mapping. Therefore the work presented in this thesis focuses on the problem of vision-based navigation for MAVs from a multi-robot perspective. Multi-robot visual navigation presents a number of challenges, as not only must the MAVs be able to estimate their state from visual observations of the environment but they must also be able to share the information they gain about their environment with other members of the team in a meaningful fashion. The meaningful sharing of observations is achieved when the MAVs have a common frame of reference for both positioning and observations. Such meaningful information sharing is key to achieving cooperative multi-robot navigation. In this thesis two main ideas are explored to address these issues. Firstly the idea of appearance based (re)-localisation is explored as a means of establishing a common reference frame for multiple MAVs. This approach allows a team of MAVs to very easily establish a common frame of reference prior to starting their mission. The common reference frame allows all subsequent operations, such as surveillance or mapping, to proceed with direct cooperative between all MAVs. The second idea focuses on the structure and nature of the inter-robot communication with respect to visual navigation; the thesis explores how a partially distributed architecture can be used to vastly improve the scalability and robustness of a multi-MAV visual navigation framework. A navigation framework would not be complete without a means of control. In the multi-robot setting the control problem is complicated by the need for inter-robot collision avoidance. This thesis presents a MAV trajectory controller based on a combination of classical control theory and distributed Velocity Obstacle (VO) based collision avoidance. Once a means of control is established an autonomous multi-MAV team requires a mission. One such mission is the task of exploration; that is exploration of a previously unknown environment in order to produce a map and/or search for objects of interest. This thesis also addressed the problem of multi-robot exploration using only the sparse interest-point data collected from the visual navigation system. In a multi-MAV exploration scenario the problem of task allocation, assigning areas to each MAV to explore, can be a challenging one. An auction-based protocol is considered to address the task allocation problem. The two applications discussed, VO-based trajectory control and auction-based environment exploration, form two case studies which serve as the partial basis of the evaluation of the navigation solutions presented in this thesis. In summary the visual navigation systems presented in this thesis allow MAVs to cooperatively perform task such as collision avoidance and environment exploration in a robust and efficient manner, with large teams of MAVs. The work presented is a step in the direction of fully autonomous teams of MAVs performing complex, dangerous and useful tasks in the real world

    Map-Based Localization for Unmanned Aerial Vehicle Navigation

    Get PDF
    Unmanned Aerial Vehicles (UAVs) require precise pose estimation when navigating in indoor and GNSS-denied / GNSS-degraded outdoor environments. The possibility of crashing in these environments is high, as spaces are confined, with many moving obstacles. There are many solutions for localization in GNSS-denied environments, and many different technologies are used. Common solutions involve setting up or using existing infrastructure, such as beacons, Wi-Fi, or surveyed targets. These solutions were avoided because the cost should be proportional to the number of users, not the coverage area. Heavy and expensive sensors, for example a high-end IMU, were also avoided. Given these requirements, a camera-based localization solution was selected for the sensor pose estimation. Several camera-based localization approaches were investigated. Map-based localization methods were shown to be the most efficient because they close loops using a pre-existing map, thus the amount of data and the amount of time spent collecting data are reduced as there is no need to re-observe the same areas multiple times. This dissertation proposes a solution to address the task of fully localizing a monocular camera onboard a UAV with respect to a known environment (i.e., it is assumed that a 3D model of the environment is available) for the purpose of navigation for UAVs in structured environments. Incremental map-based localization involves tracking a map through an image sequence. When the map is a 3D model, this task is referred to as model-based tracking. A by-product of the tracker is the relative 3D pose (position and orientation) between the camera and the object being tracked. State-of-the-art solutions advocate that tracking geometry is more robust than tracking image texture because edges are more invariant to changes in object appearance and lighting. However, model-based trackers have been limited to tracking small simple objects in small environments. An assessment was performed in tracking larger, more complex building models, in larger environments. A state-of-the art model-based tracker called ViSP (Visual Servoing Platform) was applied in tracking outdoor and indoor buildings using a UAVs low-cost camera. The assessment revealed weaknesses at large scales. Specifically, ViSP failed when tracking was lost, and needed to be manually re-initialized. Failure occurred when there was a lack of model features in the cameras field of view, and because of rapid camera motion. Experiments revealed that ViSP achieved positional accuracies similar to single point positioning solutions obtained from single-frequency (L1) GPS observations standard deviations around 10 metres. These errors were considered to be large, considering the geometric accuracy of the 3D model used in the experiments was 10 to 40 cm. The first contribution of this dissertation proposes to increase the performance of the localization system by combining ViSP with map-building incremental localization, also referred to as simultaneous localization and mapping (SLAM). Experimental results in both indoor and outdoor environments show sub-metre positional accuracies were achieved, while reducing the number of tracking losses throughout the image sequence. It is shown that by integrating model-based tracking with SLAM, not only does SLAM improve model tracking performance, but the model-based tracker alleviates the computational expense of SLAMs loop closing procedure to improve runtime performance. Experiments also revealed that ViSP was unable to handle occlusions when a complete 3D building model was used, resulting in large errors in its pose estimates. The second contribution of this dissertation is a novel map-based incremental localization algorithm that improves tracking performance, and increases pose estimation accuracies from ViSP. The novelty of this algorithm is the implementation of an efficient matching process that identifies corresponding linear features from the UAVs RGB image data and a large, complex, and untextured 3D model. The proposed model-based tracker improved positional accuracies from 10 m (obtained with ViSP) to 46 cm in outdoor environments, and improved from an unattainable result using VISP to 2 cm positional accuracies in large indoor environments. The main disadvantage of any incremental algorithm is that it requires the camera pose of the first frame. Initialization is often a manual process. The third contribution of this dissertation is a map-based absolute localization algorithm that automatically estimates the camera pose when no prior pose information is available. The method benefits from vertical line matching to accomplish a registration procedure of the reference model views with a set of initial input images via geometric hashing. Results demonstrate that sub-metre positional accuracies were achieved and a proposed enhancement of conventional geometric hashing produced more correct matches - 75% of the correct matches were identified, compared to 11%. Further the number of incorrect matches was reduced by 80%

    Service robotics and machine learning for close-range remote sensing

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore