15 research outputs found

    Quantitative, Multi-institutional Evaluation of MR Thermometry Accuracy for Deep-Pelvic MR-Hyperthermia Systems Operating in Multi-vendor MR-systems Using a New Anthropomorphic Phantom

    Get PDF
    Clinical outcome of hyperthermia depends on the achieved target temperature, therefore target conformal heating is essential. Currently, invasive temperature probe measurements are the gold standard for temperature monitoring, however, they only provide limited sparse data. In contrast, magnetic resonance thermometry (MRT) provides unique capabilities to non-invasively measure the 3D-temperature. This study investigates MRT accuracy for MR-hyperthermia hybrid systems located at five European institutions while heating a centric or eccentric target in anthropomorphic phantoms with pelvic and spine structures. Scatter plots, root mean square error (RMSE) and Bland–Altman analysis were used to quantify accuracy of MRT compared to high resistance thermistor probe measurements. For all institutions, a linear relation between MRT and thermistor probes measurements was found with R 2 (mean ± standard deviation) of 0.97 ± 0.03 and 0.97 ± 0.02, respectively for centric and eccentric heating targets. The RMSE was found to be 0.52 ± 0.31 ◦C and 0.30 ± 0.20 ◦C, respectively. The Bland-Altman evaluation showed a mean difference of 0.46 ± 0.20 ◦C and 0.13 ± 0.08 ◦C, respectively. This first multi-institutional evaluation of MR-hyperthermia hybrid systems indicates comparable device performance and good agreement between MRT and thermistor probes measurements. This forms the basis to standardize treatments in multi-institution studies of MR-guided hyperthermia and to elucidate thermal dose-effect relations

    Quantitative, Multi-institutional Evaluation of MR Thermometry Accuracy for Deep-Pelvic MR-Hyperthermia Systems Operating in Multi-vendor MR-systems Using a New Anthropomorphic Phantom

    Get PDF
    Clinical outcome of hyperthermia depends on the achieved target temperature, therefore target conformal heating is essential. Currently, invasive temperature probe measurements are the gold standard for temperature monitoring, however, they only provide limited sparse data. In contrast, magnetic resonance thermometry (MRT) provides unique capabilities to non-invasively measure the 3D-temperature. This study investigates MRT accuracy for MR-hyperthermia hybrid systems located at five European institutions while heating a centric or eccentric target in anthropomorphic phantoms with pelvic and spine structures. Scatter plots, root mean square error (RMSE) and Bland–Altman analysis were used to quantify accuracy of MRT compared to high resistance thermistor probe measurements. For all institutions, a linear relation between MRT and thermistor probes measurements was found with R2 (mean ± standard deviation) of 0.97 ± 0.03 and 0.97 ± 0.02, respectively for centric and eccentric heating targets. The RMSE was found to be 0.52 ± 0.31 °C and 0.30 ± 0.20 °C, respectively. The Bland-Altman evaluation showed a mean difference of 0.46 ± 0.20 °C and 0.13 ± 0.08 °C, respectively. This first multi-institutional evaluation of MR-hyperthermia hybrid systems indicates comparable device performance and good agreement between MRT and thermistor probes measurements. This forms the basis to standardize treatments in multi-institution studies of MR-guided hyperthermia and to elucidate thermal dose-effect relations

    A multi-institution study: comparison of the heating patterns of five different MR-guided deep hyperthermia systems using an anthropomorphic phantom

    Get PDF
    Introduction Within the hyperthermia community, consensus exists that clinical outcome of the treatment radiotherapy and/or chemotherapy plus hyperthermia (i.e. elevating tumor temperature to 40 − 44 °C) is related to the applied thermal dose; hence, treatment quality is crucial for the success of prospective multi-institution clinical trials. Currently, applicator quality assurance (QA) measurements are implemented independently at each institution using basic cylindrical phantoms. A multi-institution comparison of heating quality using magnetic resonance thermometry (MRT) and anatomical representative anthropomorphic phantoms provides a unique opportunity to obtain novel QA insights to f

    MR thermometry for hyperthermia in the head and neck

    Get PDF

    Design, implementation, evaluation and application of a 32-channel radio frequency signal generator for thermal magnetic resonance based anti-cancer treatment

    Get PDF
    Thermal Magnetic Resonance (ThermalMR) leverages radio frequency (RF)-induced heating to examine the role of temperature in biological systems and disease. To advance RF heating with multi-channel RF antenna arrays and overcome the shortcomings of current RF signal sources, this work reports on a 32-channel modular signal generator (SG(PLL)). The SG(PLL) was designed around phase-locked loop (PLL) chips and a field-programmable gate array chip. To examine the system properties, switching/settling times, accuracy of RF power level and phase shifting were characterized. Electric field manipulation was successfully demonstrated in deionized water. RF heating was conducted in a phantom setup using self-grounded bow-tie RF antennae driven by the SG(PLL). Commercial signal generators limited to a lower number of RF channels were used for comparison. RF heating was evaluated with numerical temperature simulations and experimentally validated with MR thermometry. Numerical temperature simulations and heating experiments controlled by the SG(PLL) revealed the same RF interference patterns. Upon RF heating similar temperature changes across the phantom were observed for the SG(PLL) and for the commercial devices. To conclude, this work presents the first 32-channel modular signal source for RF heating. The large number of coherent RF channels, wide frequency range and accurate phase shift provided by the SG(PLL) form a technological basis for ThermalMR controlled hyperthermia anti-cancer treatment

    Clinical performance and future potential of magnetic resonance thermometry in hyperthermia

    Get PDF
    Hyperthermia treatments in the clinic rely on accurate temperature measurements to guide treatments and evaluate clinical outcome. Currently, magnetic resonance thermometry (MRT) is the only clinical option to non-invasively measure 3D temperature distributions. In this review, we evaluate the status quo and emerging approaches in this evolving technology for replacing conventional dosimetry based on intraluminal or invasively placed probes. First, we define standard-ized MRT performance thresholds, aiming at facilitating transparency in this field when comparing MR temperature mapping performance for the various scenarios that hyperthermia is currently applied in the clinic. This is based upon our clinical experience of treating nearly 4000 patients with superficial and deep hyperthermia. Second, we perform a systematic literature review, assessing MRT performance in (I) clinical and (II) pre-clinical papers. From (I) we identify the current clinical status of MRT, including the problems faced and from (II) we extract promising new techniques with the potential to accelerate progress. From (I) we found that the basic requirements for MRT during hyperthermia in the clinic are largely met for regions without motion, for example extremities. In more challenging regions (abdomen and thorax), progress has been stagnating after the clinical introduction of MRT-guided hyperthermia over 20 years ago. One clear difficulty for advancement is that performance is not or not uniformly reported, but also that studies often omit important details regarding their approach. Motion was found to be the common main issue hindering accurate MRT. Based on (II), we reported and highlighted promising developments to tackle the issues resulting from motion (directly or indirectly), including new developments as well as optimization of already existing strategies. Combined, these may have the potential to facilitate improvement in MRT in the form of more stable and reliable measurements via better stability and accuracy

    Measurement of thermal properties of biological tissues and tissue-mimicking phantom with a dual-needle sensor

    Get PDF
    This work presents the measurement of the thermal properties of ex vivo biological tissues (i.e., porcine liver and kidney tissues) as a function of temperature, along with the thermal characterization of a tissue-mimicking agar-based phantom. The evaluation of the thermal properties was performed by the dual needle technique, adopting a sensor equipped with two needles, capable to deliver thermal energy to the biomaterial and monitor the related tissue thermal behavior. Measurements of thermal conductivity, thermal diffusivity, and volumetric heat capacity were conducted at room temperature and at temperatures relevant from a biological point of view, namely, body temperature and temperatures of similar to 60 degrees C- 65 degrees C, which are typically correlated to instantaneous thermal damage in tissue. Thermal properties of biological tissue remained rather constant at the investigated temperatures: average values of thermal conductivity ranged from 0.515 W/(m.K) to 0.575 W/(m.K), thermal diffusivity ranged from 0.144 mm(2)/s to 0.163 mm2/s, whilst the average volumetric heat capacity was from 3.48 MJ/(m(3).K) to 3.72 MJ/(m(3).K). Furthermore, the thermal properties of the realized agar phantom were comparable to the ones of biological tissues. The results of this study provide valuable information for the characterization of porcine liver and kidney tissues, in terms of their thermal properties, to be used in predictive mathematical models of thermal therapies and validate the usage of agar phantoms as tissue-mimicking materials

    Oncologic Thermoradiotherapy: Need for Evidence, Harmonisation, and Innovation

    Get PDF
    The road of acceptance of oncologic thermotherapy/hyperthermia as a synergistic modality in combination with standard oncologic therapies is still bumpy. This is partially due to the lack of level I evidence from international, multicentric, randomized clinical trials including large patient numbers and a long term follow-up. Therefore we need more level I EVIDENCE from clinical trials, we need HARMONISATION and global acceptance for existing technologies and a common language understood by all stakeholders and we need INNOVATION in the fields of biology, clinics and technology to move thermotherapy/hyperthermia forward. This is the main focus of this reprint. In this reprintyou find carefully selected and peer-reviewed contributions from Africa, America, Asia, and Europe. The published papers from leading scientists from all over the world covering a broad range of timely research topics might also help to strengthen thermotherapy on a global level
    corecore