23 research outputs found

    Quantised Angular Momentum Vectors and Projection Angle Distributions for Discrete Radon Transformations

    Get PDF
    International audienceA quantum mechanics based method is presented to generate sets of digital angles that may be well suited to describe projections on discrete grids. The resulting angle sets are an alternative to those derived using the Farey fractions from number theory. The Farey angles arise naturally through the definitions of the Mojette and Finite Radon Transforms. Often a subset of the Farey angles needs to be selected when reconstructing images from a limited number of views. The digital angles that result from the quantisation of angular momentum (QAM) vectors may provide an alternative way to select angle subsets. This paper seeks first to identify the important properties of digital angles sets and second to demonstrate that the QAM vectors are indeed a candidate set that fulfils these requirements. Of particular note is the rare occurrence of degeneracy in the QAM angles, particularly for the half-integral angular momenta angle sets

    The Topos-theoretical Approach to Quantum Physics

    Get PDF
    I oppgaven tas det sikte på å anvende begreper og metoder fra kategoriteori og især toposteori innen kvantefysikken. I den resulterende teorien, "toposfysikk", brukes toposteori (teorien om generaliserte mengdeuniverser og generaliserte rom) som et verktøy for å konstruere kvantefysikken ved å "lime sammen" klassiske perspektiver eller "snapshots". Første kapitel gir den nødvendige bakgrunn for å forstå den fysiske motivasjonen bak konstruksjonene i de påfølgende kapitler, med særlig oppmerksomhet viet emnene logikk, kvantisering og rom. I kapitel 2 presenteres først elementær teori om kategorier og topoi. Det gis deretter en gjennomgang av toposfysikkens sentrale trekk: konstruksjonen av et tilstandsrom for kvantemekanikken ved hjelp av (kovariante eller kontravariante) funktorer over en kategori av kommutative operatoralgebraer. To ulike tilnærmingsmåter, Andreas Döring og Chris Ishams "neorealisme" og Chris Heunen, Nicolas P. Landsmaan og Bas Spitters "Bohrifikasjon" presenteres i detalj. I kapitel 3 anvendes den sistnevnte tilnærmingen på teorien om "loop quantum gravity" (LQG). Kapitelet har derfor en kort oppsummering av hovedresultatene innen LQG. Det undersøkes hvordan LQG kan interpreteres innen toposfysikk ved å ta i bruk Christian Fleischhacks formulering av LQG som en Weylalgebra. De topologiske egenskapene til tilstandsrommet i LQG innen toposmodellen undersøkes, og det vises hvordan kravene til gauge- og diffeomorfiinvarians kan interpreteres i teorien. Endelig, ved hjelp av Ishams teknikk for å kvantisere generelle strukturer, utvides den toposfysiske modellen til å inkludere et bredere kategoriteoretisk rammeverk. Vi definerer en målteori for kategorier og undersøker teoriens byggesteiner, pilfeltene over en kategori, i kategorien av deres representasjoner. Vi antyder hvordan modellen kan anvendes innen Sorkins teori om kausale mengder, og som basis for en teori om kvantisert logikk

    Digital Image Processing

    Get PDF
    Newspapers and the popular scientific press today publish many examples of highly impressive images. These images range, for example, from those showing regions of star birth in the distant Universe to the extent of the stratospheric ozone depletion over Antarctica in springtime, and to those regions of the human brain affected by Alzheimer’s disease. Processed digitally to generate spectacular images, often in false colour, they all make an immediate and deep impact on the viewer’s imagination and understanding. Professor Jonathan Blackledge’s erudite but very useful new treatise Digital Image Processing: Mathematical and Computational Methods explains both the underlying theory and the techniques used to produce such images in considerable detail. It also provides many valuable example problems - and their solutions - so that the reader can test his/her grasp of the physical, mathematical and numerical aspects of the particular topics and methods discussed. As such, this magnum opus complements the author’s earlier work Digital Signal Processing. Both books are a wonderful resource for students who wish to make their careers in this fascinating and rapidly developing field which has an ever increasing number of areas of application. The strengths of this large book lie in: • excellent explanatory introduction to the subject; • thorough treatment of the theoretical foundations, dealing with both electromagnetic and acoustic wave scattering and allied techniques; • comprehensive discussion of all the basic principles, the mathematical transforms (e.g. the Fourier and Radon transforms), their interrelationships and, in particular, Born scattering theory and its application to imaging systems modelling; discussion in detail - including the assumptions and limitations - of optical imaging, seismic imaging, medical imaging (using ultrasound), X-ray computer aided tomography, tomography when the wavelength of the probing radiation is of the same order as the dimensions of the scatterer, Synthetic Aperture Radar (airborne or spaceborne), digital watermarking and holography; detail devoted to the methods of implementation of the analytical schemes in various case studies and also as numerical packages (especially in C/C++); • coverage of deconvolution, de-blurring (or sharpening) an image, maximum entropy techniques, Bayesian estimators, techniques for enhancing the dynamic range of an image, methods of filtering images and techniques for noise reduction; • discussion of thresholding, techniques for detecting edges in an image and for contrast stretching, stochastic scattering (random walk models) and models for characterizing an image statistically; • investigation of fractal images, fractal dimension segmentation, image texture, the coding and storing of large quantities of data, and image compression such as JPEG; • valuable summary of the important results obtained in each Chapter given at its end; • suggestions for further reading at the end of each Chapter. I warmly commend this text to all readers, and trust that they will find it to be invaluable. Professor Michael J Rycroft Visiting Professor at the International Space University, Strasbourg, France, and at Cranfield University, England

    Quantum Information at High and Low Energies

    Get PDF
    In this thesis, we take a look at how quantum information theory can be used to study physical systems at both high and low energies. In the first part of this thesis, we examine the structure of the low-energy subspaces of quantum many-body systems. We show that the existence of error-correcting properties in low-energy subspaces is a generic feature of quantum systems. Using the formalism of matrix product states, we construct explicit quantum error-detecting codes formed from the momentum eigenstates of a quantum many-body system. We also examine how topological order can persist past the ground state space into the low-energy subspace of excited states by studying the No Low-Energy Trivial States (NLTS) conjecture. We prove a version of the NLTS conjecture under the assumption of symmetry protection. Moreover, we show that our symmetric NLTS result has implications for the performance of quantum variational optimization algorithms by using it to prove a bound on the Quantum Approximate Optimization Algorithm (QAOA). In the second part of this thesis, we examine problems related to bulk reconstruction in holography and the black hole firewall paradox. Using the formalism of the tensor Radon transform, we devise and implement a numerical algorithm for reconstructing (perturbatively in AdS₃/CFT₂) the bulk metric tensor from a given boundary entropy profile. We finally examine the black hole firewall problem from the perspective of quantum error-correction and quantum computational complexity. We argue that the state of the Hawking radiation has the special property of being computationally pseudorandom, meaning that it cannot be distinguished from the maximally mixed state by any efficient quantum computation. We show that this implies that each black hole has a natural structure as a quantum error-correcting code.</p

    Notes in Pure Mathematics & Mathematical Structures in Physics

    Full text link
    These Notes deal with various areas of mathematics, and seek reciprocal combinations, explore mutual relations, ranging from abstract objects to problems in physics.Comment: Small improvements and addition

    High Throughput Software for Powder Diffraction and its Application to Heterogeneous Catalysis

    Full text link
    In this thesis we investigate high throughput computational methods for processing large quantities of data collected from synchrotrons and their application to spectral analysis of powder diffraction data. We also present the main product of this PhD programme, specifically a software called 'EasyDD' developed by the author. This software was created to meet the increasing demand on data processing and analysis capabilities as required by modern detectors which produce huge quantities of data. Modern detectors coupled with the high intensity X-ray sources available at synchrotrons have led to the situation where datasets can be collected in ever shorter time scales and in ever larger numbers. Such large volumes of datasets pose a data processing bottleneck which augments with current and future instrument development. EasyDD has achieved its objectives and made significant contributions to scientific research. It can also be used as a model for more mature attempts in the future. EasyDD is currently in use by a number of researchers in a number of academic and research institutions to process high-energy diffraction data. These include data collected by different techniques such as Energy Dispersive Diffraction, Angle Dispersive Diffraction and Computer Aided Tomography. EasyDD has already been used in a number of published studies, and is currently in use by the High Energy X-Ray Imaging Technology project. The software was also used by the author to process and analyse datasets collected from synchrotron radiation facilities. In this regard, the thesis presents novel scientific research involving the use of EasyDD to handle large diffraction datasets in the study of alumina-supported metal oxide catalyst bodies. These data were collected using Tomographic Energy Dispersive Diffraction Imaging and Computer Aided Tomography techniques.Comment: thesis, 202 pages, 95 figures, 6 table

    Towards interfacing single photons emitted from Dibenzoterrylene with rubidium ensemble quantum memories

    Get PDF
    Photonic quantum information processing is a pivotal aspect of the emerging quantum tech- nology landscape, with a wide range of applications in quantum computing, communication, simulation and sensing. The use of single photons for these applications is of immense interest, but requires both the generation of single photons and the ability to interact them separately, often relying on probabilistic processes. The first part of this thesis showcases work on the generation of single photons, utilizing an organic molecule, Dibenzoterrylene (DBT), doped into an anthracene (Ac) crystal. We will in- troduce a comprehensive theoretical framework for characterizing these molecules, and present experimental results where the wavlength of emission from DBT is tuned through three dif- ferent tuning mechanisms. Additionally, we will explore techniques for enhancing the emission properties of DBT, before finally demonstrating single photon emission from DBT in a novel host matrix: para-Terphenyl. In the second part of this thesis, we shift our focus to quantum memories - critical devices capable of storing and on-demand recall of quantum states of light, required to overcome the limitations of probabilistic photon-photon interactions. We will derive equations of motion governing the memory interaction with single photons and an ensemble of atoms. Next, we will explore methods for optimizing the memory interaction, while increasing the complexity of our model to more accurately resemble an interface between photons emitted from DBT/Ac and a rubidium (Rb) vapour, near resonant with the DBT/Ac. Finally, we will present the major challenges facing these systems and potential avenues for overcoming them. The results presented in this thesis pave the way for interfacing photons emitted from DBT with quantum memories based on a Rb ensemble.Open Acces

    Advances in Fundamental Physics

    Get PDF
    This Special Issue celebrates the opening of a new section of the journal Foundation: Physical Sciences. Theoretical and experimental studies related to various areas of fundamental physics are presented in this Special Issue. The published papers are related to the following topics: dark matter, electron impact excitation, second flavor of hydrogen atoms, quantum antenna, molecular hydrogen, molecular hydrogen ion, wave pulses, Brans-Dicke theory, hydrogen Rydberg atom, high-frequency laser field, relativistic mean field formalism, nonlocal continuum field theories, parallel universe, charge exchange, van der Waals broadening, greenhouse effect, strange and unipolar electromagnetic pulses, quasicrystals, Wilhelm-Weber’s electromagnetic force law, axions, photoluminescence, neutron stars, gravitational waves, diatomic molecular spectroscopy, information geometric measures of complexity. Among 21 papers published in this Special Issue, there are 5 reviews and 16 original research papers
    corecore