36,220 research outputs found

    Robust Estimation and Inference for Expected Shortfall Regression with Many Regressors

    Full text link
    Expected Shortfall (ES), also known as superquantile or Conditional Value-at-Risk, has been recognized as an important measure in risk analysis and stochastic optimization, and is also finding applications beyond these areas. In finance, it refers to the conditional expected return of an asset given that the return is below some quantile of its distribution. In this paper, we consider a recently proposed joint regression framework that simultaneously models the quantile and the ES of a response variable given a set of covariates, for which the state-of-the-art approach is based on minimizing a joint loss function that is non-differentiable and non-convex. This inevitably raises numerical challenges and limits its applicability for analyzing large-scale data. Motivated by the idea of using Neyman-orthogonal scores to reduce sensitivity with respect to nuisance parameters, we propose a statistically robust (to highly skewed and heavy-tailed data) and computationally efficient two-step procedure for fitting joint quantile and ES regression models. With increasing covariate dimensions, we establish explicit non-asymptotic bounds on estimation and Gaussian approximation errors, which lay the foundation for statistical inference. Finally, we demonstrate through numerical experiments and two data applications that our approach well balances robustness, statistical, and numerical efficiencies for expected shortfall regression

    Kernel conditional quantile estimation via reduction revisited

    Get PDF
    Quantile regression refers to the process of estimating the quantiles of a conditional distribution and has many important applications within econometrics and data mining, among other domains. In this paper, we show how to estimate these conditional quantile functions within a Bayes risk minimization framework using a Gaussian process prior. The resulting non-parametric probabilistic model is easy to implement and allows non-crossing quantile functions to be enforced. Moreover, it can directly be used in combination with tools and extensions of standard Gaussian Processes such as principled hyperparameter estimation, sparsification, and quantile regression with input-dependent noise rates. No existing approach enjoys all of these desirable properties. Experiments on benchmark datasets show that our method is competitive with state-of-the-art approaches.

    Quantile regression for mixed models with an application to examine blood pressure trends in China

    Get PDF
    Cardiometabolic diseases have substantially increased in China in the past 20 years and blood pressure is a primary modifiable risk factor. Using data from the China Health and Nutrition Survey, we examine blood pressure trends in China from 1991 to 2009, with a concentration on age cohorts and urbanicity. Very large values of blood pressure are of interest, so we model the conditional quantile functions of systolic and diastolic blood pressure. This allows the covariate effects in the middle of the distribution to vary from those in the upper tail, the focal point of our analysis. We join the distributions of systolic and diastolic blood pressure using a copula, which permits the relationships between the covariates and the two responses to share information and enables probabilistic statements about systolic and diastolic blood pressure jointly. Our copula maintains the marginal distributions of the group quantile effects while accounting for within-subject dependence, enabling inference at the population and subject levels. Our population-level regression effects change across quantile level, year and blood pressure type, providing a rich environment for inference. To our knowledge, this is the first quantile function model to explicitly model within-subject autocorrelation and is the first quantile function approach that simultaneously models multivariate conditional response. We find that the association between high blood pressure and living in an urban area has evolved from positive to negative, with the strongest changes occurring in the upper tail. The increase in urbanization over the last twenty years coupled with the transition from the positive association between urbanization and blood pressure in earlier years to a more uniform association with urbanization suggests increasing blood pressure over time throughout China, even in less urbanized areas. Our methods are available in the R package BSquare.Comment: Published at http://dx.doi.org/10.1214/15-AOAS841 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    M-quantile regression analysis of temporal gene expression data

    Get PDF
    In this paper, we explore the use of M-regression and M-quantile coefficients to detect statistical differences between temporal curves that belong to different experimental conditions. In particular, we consider the application of temporal gene expression data. Here, the aim is to detect genes whose temporal expression is significantly different across a number of biological conditions. We present a new method to approach this problem. Firstly, the temporal profiles of the genes are modelled by a parametric M-quantile regression model. This model is particularly appealing to small-sample gene expression data, as it is very robust against outliers and it does not make any assumption on the error distribution. Secondly, we further increase the robustness of the method by summarising the M-quantile regression models for a large range of quantile values into an M-quantile coefficient. Finally, we employ a Hotelling T2-test to detect significant differences of the temporal M-quantile profiles across conditions. Simulated data shows the increased robustness of M-quantile regression methods over standard regression methods. We conclude by using the method to detect differentially expressed genes from time-course microarray data on muscular dystrophy

    Conditional Transformation Models

    Full text link
    The ultimate goal of regression analysis is to obtain information about the conditional distribution of a response given a set of explanatory variables. This goal is, however, seldom achieved because most established regression models only estimate the conditional mean as a function of the explanatory variables and assume that higher moments are not affected by the regressors. The underlying reason for such a restriction is the assumption of additivity of signal and noise. We propose to relax this common assumption in the framework of transformation models. The novel class of semiparametric regression models proposed herein allows transformation functions to depend on explanatory variables. These transformation functions are estimated by regularised optimisation of scoring rules for probabilistic forecasts, e.g. the continuous ranked probability score. The corresponding estimated conditional distribution functions are consistent. Conditional transformation models are potentially useful for describing possible heteroscedasticity, comparing spatially varying distributions, identifying extreme events, deriving prediction intervals and selecting variables beyond mean regression effects. An empirical investigation based on a heteroscedastic varying coefficient simulation model demonstrates that semiparametric estimation of conditional distribution functions can be more beneficial than kernel-based non-parametric approaches or parametric generalised additive models for location, scale and shape

    Interpretable statistics for complex modelling: quantile and topological learning

    Get PDF
    As the complexity of our data increased exponentially in the last decades, so has our need for interpretable features. This thesis revolves around two paradigms to approach this quest for insights. In the first part we focus on parametric models, where the problem of interpretability can be seen as a “parametrization selection”. We introduce a quantile-centric parametrization and we show the advantages of our proposal in the context of regression, where it allows to bridge the gap between classical generalized linear (mixed) models and increasingly popular quantile methods. The second part of the thesis, concerned with topological learning, tackles the problem from a non-parametric perspective. As topology can be thought of as a way of characterizing data in terms of their connectivity structure, it allows to represent complex and possibly high dimensional through few features, such as the number of connected components, loops and voids. We illustrate how the emerging branch of statistics devoted to recovering topological structures in the data, Topological Data Analysis, can be exploited both for exploratory and inferential purposes with a special emphasis on kernels that preserve the topological information in the data. Finally, we show with an application how these two approaches can borrow strength from one another in the identification and description of brain activity through fMRI data from the ABIDE project
    • 

    corecore