166,242 research outputs found

    Historical contingency in species interactions: towards niche-based predictions.

    Get PDF
    The way species affect one another in ecological communities often depends on the order of species arrival. The magnitude of such historical contingency, known as priority effects, varies across species and environments, but this variation has proven difficult to predict, presenting a major challenge in understanding species interactions and consequences for community structure and function. Here, we argue that improved predictions can be achieved by decomposing species' niches into three components: overlap, impact and requirement. Based on classic theories of community assembly, three hypotheses that emphasise related, but distinct influences of the niche components are proposed: priority effects are stronger among species with higher resource use overlap; species that impact the environment to a greater extent exert stronger priority effects; and species whose growth rate is more sensitive to changes in the environment experience stronger priority effects. Using nectar-inhabiting microorganisms as a model system, we present evidence that these hypotheses complement the conventional hypothesis that focuses on the role of environmental harshness, and show that niches can be twice as predictive when separated into components. Taken together, our hypotheses provide a basis for developing a general framework within which the magnitude of historical contingency in species interactions can be predicted

    Organic agriculture and climate change mitigation - A report of the Round Table on Organic Agriculture and Climate Change

    Get PDF
    Summary and next steps Participants of the workshop were able to draw from their discussions and from the input of guest speakers and synthesize a set of conclusions that can be used to guide future activities concerning LCAs and other activities that seek to identify and quantify the potential contributions of organic agriculture to climate change mitigation. - LCA is the best tool for measuring GHG emissions related to agricultural products. - There is a risk of oversimplification when focusing on climate change as a single environmental impact category. - Farm production and transport (at least for plant products) are important hotspots for agricultural products. - Studies have shown no remarkable difference in GHG emissions between organic and conventional but, traditionally, soil carbon changes have not been included – which can have a major impact, especially for plant products. - The challenges of LCA of organic products – accounting for carbon sequestration and interactions in farming systems, including the environmental costs of manure – need to be addressed. - Attempts should be made to secure a consistent LCA methodology for agricultural products, including organic products

    Towards a scope management of non-functional requirements in requirements engineering

    Get PDF
    Getting business stakeholders’ goals formulated clearly and project scope defined realistically increases the chance of success for any application development process. As a consequence, stakeholders at early project stages acquire as much as possible knowledge about the requirements, their risk estimates and their prioritization. Current industrial practice suggests that in most software projects this scope assessment is performed on the user’s functional requirements (FRs), while the non-functional requirements (NFRs) remain, by and large, ignored. However, the increasing software complexity and competition in the software industry has highlighted the need to consider NFRs as an integral part of software modeling and development. This paper contributes towards harmonizing the need to build the functional behavior of a system with the need to model the associated NFRs while maintaining a scope management for NFRs. The paper presents a systematic and precisely defined model towards an early integration of NFRs within the requirements engineering (RE). Early experiences with the model indicate its ability to facilitate the process of acquiring the knowledge on the priority and risk of NFRs

    A Framework for Life Cycle Sustainability Assessment of Road Salt Used in Winter Maintenance Operations

    Get PDF
    It is important to assess from a holistic perspective the sustainability of road salt widely used in winter road maintenance (WRM) operations. The importance becomes increasingly apparent in light of competing priorities faced by roadway agencies, the need for collaborative decision-making, and growing concerns over the risks that road salt poses for motor vehicles, transportation infrastructure, and the natural environment. This project introduces the concept of Life Cycle Sustainability Assessment (LCSA), which combines Life Cycle Costing, Environmental Life Cycle Assessment, and Social Life Cycle Assessment. The combination captures the features of three pillars in sustainability: economic development, environmental preservation, and social progress. With this framework, it is possible to enable more informed and balanced decisions by considering the entire life cycle of road salt and accounting for the indirect impacts of applying road salt for snow and ice control. This project proposes a LCSA framework of road salt, which examines the three branches of LCSA, their relationships in the integrated framework, and the complexities and caveats in the LCSA. While this framework is a first step in the right direction, we envision that it will be improved and enriched by continued research and may serve as a template for the LCSA of other WRM products, technologies, and practices

    A framework for integrating syntax, semantics and pragmatics for computer-aided professional practice: With application of costing in construction industry

    Get PDF
    Producing a bill of quantity is a knowledge-based, dynamic and collaborative process, and evolves with variances and current evidence. However, within the context of information system practice in BIM, knowledge of cost estimation has not been represented, nor has it been integrated into the processes based on BIM. This paper intends to establish an innovative means of taking data from the BIM linked to a project, and using it to create the necessary items for a bill of quantity that will enable cost estimation to be undertaken for the project. Our framework is founded upon the belief that three components are necessary to gain a full awareness of the domain which is being computerised; the information type which is to be assessed for compatibility (syntax), the definition for the pricing domain (semantics), and the precise implementation environment for the standards being taken into account (pragmatics). In order to achieve this, a prototype is created that allows a cost item for the bill of quantity to be spontaneously generated, by means of the semantic web ontology and a forward chain algorithm. Within this paper, ‘cost items’ signify the elements included in a bill of quantity, including details of their description, quantity and price. As a means of authenticating the process being developed, the authors of this work effectively implemented it in the production of cost items. In addition, the items created were contrasted with those produced by specialists. For this reason, this innovative framework introduces the possibility of a new means of applying semantic web ontology and forward chain algorithm to construction professional practice resulting in automatic cost estimation. These key outcomes demonstrate that, decoupling the professional practice into three key components of syntax, semantics and pragmatics can provide tangible benefits to domain use

    Assessing the cost of global biodiversity and conservation knowledge

    Get PDF
    Knowledge products comprise assessments of authoritative information supported by stan-dards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge productsfor biodiversity conservation, and they are widely used to inform policy and advise decisionmakers and practitioners. However, the financial cost of delivering this information is largelyundocumented. We evaluated the costs and funding sources for developing and maintain-ing four global biodiversity and conservation knowledge products: The IUCN Red List ofThreatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the WorldDatabase of Key Biodiversity Areas. These are secondary data sets, built on primary datacollected by extensive networks of expert contributors worldwide. We estimate that US160million(range:US160million (range: US116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US14million(rangeUS 14 million (range US12–16 million), were invested inthese four knowledge products between 1979 and 2013. More than half of this financingwas provided through philanthropy, and nearly three-quarters was spent on personnelcosts. The estimated annual cost of maintaining data and platforms for three of these knowl-edge products (excluding the IUCN Red List of Ecosystems for which annual costs were notpossible to estimate for 2013) is US6.5millionintotal(range:US6.5 million in total (range: US6.2–6.7 million). We esti-mated that an additional US114millionwillbeneededtoreachpredefinedbaselinesofdatacoverageforallthefourknowledgeproducts,andthatonceachieved,annualmaintenancecostswillbeapproximatelyUS114 million will be needed to reach pre-defined baselines ofdata coverage for all the four knowledge products, and that once achieved, annual mainte-nance costs will be approximately US12 million. These costs are much lower than those tomaintain many other, similarly important, global knowledge products. Ensuring that biodi-versity and conservation knowledge products are sufficiently up to date, comprehensiveand accurate is fundamental to inform decision-making for biodiversity conservation andsustainable development. Thus, the development and implementation of plans for sustain-able long-term financing for them is critical

    Early Quantitative Assessment of Non-Functional Requirements

    Get PDF
    Non-functional requirements (NFRs) of software systems are a well known source of uncertainty in effort estimation. Yet, quantitatively approaching NFR early in a project is hard. This paper makes a step towards reducing the impact of uncertainty due to NRF. It offers a solution that incorporates NFRs into the functional size quantification process. The merits of our solution are twofold: first, it lets us quantitatively assess the NFR modeling process early in the project, and second, it lets us generate test cases for NFR verification purposes. We chose the NFR framework as a vehicle to integrate NFRs into the requirements modeling process and to apply quantitative assessment procedures. Our solution proposal also rests on the functional size measurement method, COSMIC-FFP, adopted in 2003 as the ISO/IEC 19761 standard. We extend its use for NFR testing purposes, which is an essential step for improving NFR development and testing effort estimates, and consequently for managing the scope of NFRs. We discuss the advantages of our approach and the open questions related to its design as well
    corecore