16 research outputs found

    Quantifying the effect of uncertainty in input parameters in a simplified bidomain model of partial thickness ischaemia

    Get PDF
    Reduced blood flow in the coronary arteries can lead to damaged heart tissue (myocardial ischaemia). Although one method for detecting myocardial ischaemia involves changes in the ST segment of the electrocardiogram, the relationship between these changes and subendocardial ischaemia is not fully understood. In this study, we modelled ST-segment epicardial potentials in a slab model of cardiac ventricular tissue, with a central ischaemic region, using the bidomain model, which considers conduction longitudinal, transverse and normal to the cardiac fibres. We systematically quantified the effect of uncertainty on the input parameters, fibre rotation angle, ischaemic depth, blood conductivity and six bidomain conductivities, on outputs that characterise the epicardial potential distribution. We found that three typical types of epicardial potential distributions (one minimum over the central ischaemic region, a tripole of minima, and two minima flanking a central maximum) could all occur for a wide range of ischaemic depths. In addition, the positions of the minima were affected by both the fibre rotation angle and the ischaemic depth, but not by changes in the conductivity values. We also showed that the magnitude of ST depression is affected only by changes in the longitudinal and normal conductivities, but not by the transverse conductivities

    Multiscale Cohort Modeling of Atrial Electrophysiology : Risk Stratification for Atrial Fibrillation through Machine Learning on Electrocardiograms

    Get PDF
    Patienten mit Vorhofflimmern sind einem fünffach erhöhten Risiko für einen ischämischen Schlaganfall ausgesetzt. Eine frühzeitige Erkennung und Diagnose der Arrhythmie würde ein rechtzeitiges Eingreifen ermöglichen, um möglicherweise auftretende Begleiterkrankungen zu verhindern. Eine Vergrößerung des linken Vorhofs sowie fibrotisches Vorhofgewebe sind Risikomarker für Vorhofflimmern, da sie die notwendigen Voraussetzungen für die Aufrechterhaltung der chaotischen elektrischen Depolarisation im Vorhof erfüllen. Mithilfe von Techniken des maschinellen Lernens könnten Fibrose und eine Vergrößerung des linken Vorhofs basierend auf P Wellen des 12-Kanal Elektrokardiogramms im Sinusrhythmus automatisiert identifiziert werden. Dies könnte die Basis für eine nicht-invasive Risikostrat- ifizierung neu auftretender Vorhofflimmerepisoden bilden, um anfällige Patienten für ein präventives Screening auszuwählen. Zu diesem Zweck wurde untersucht, ob simulierte Vorhof-Elektrokardiogrammdaten, die dem klinischen Trainingssatz eines maschinellen Lernmodells hinzugefügt wurden, zu einer verbesserten Klassifizierung der oben genannten Krankheiten bei klinischen Daten beitra- gen könnten. Zwei virtuelle Kohorten, die durch anatomische und funktionelle Variabilität gekennzeichnet sind, wurden generiert und dienten als Grundlage für die Simulation großer P Wellen-Datensätze mit genau bestimmbaren Annotationen der zugrunde liegenden Patholo- gie. Auf diese Weise erfüllen die simulierten Daten die notwendigen Voraussetzungen für die Entwicklung eines Algorithmus für maschinelles Lernen, was sie von klinischen Daten unterscheidet, die normalerweise nicht in großer Zahl und in gleichmäßig verteilten Klassen vorliegen und deren Annotationen möglicherweise durch unzureichende Expertenannotierung beeinträchtigt sind. Für die Schätzung des Volumenanteils von linksatrialem fibrotischen Gewebe wurde ein merkmalsbasiertes neuronales Netz entwickelt. Im Vergleich zum Training des Modells mit nur klinischen Daten, führte das Training mit einem hybriden Datensatz zu einer Reduzierung des Fehlers von durchschnittlich 17,5 % fibrotischem Volumen auf 16,5 %, ausgewertet auf einem rein klinischen Testsatz. Ein Long Short-Term Memory Netzwerk, das für die Unterscheidung zwischen gesunden und P Wellen von vergrößerten linken Vorhöfen entwickelt wurde, lieferte eine Genauigkeit von 0,95 wenn es auf einem hybriden Datensatz trainiert wurde, von 0,91 wenn es nur auf klinischen Daten trainiert wurde, die alle mit 100 % Sicherheit annotiert wurden, und von 0,83 wenn es auf einem klinischen Datensatz trainiert wurde, der alle Signale unabhängig von der Sicherheit der Expertenannotation enthielt. In Anbetracht der Ergebnisse dieser Arbeit können Elektrokardiogrammdaten, die aus elektrophysiologischer Modellierung und Simulationen an virtuellen Patientenkohorten resul- tieren und relevante Variabilitätsaspekte abdecken, die mit realen Beobachtungen übereinstim- men, eine wertvolle Datenquelle zur Verbesserung der automatisierten Risikostratifizierung von Vorhofflimmern sein. Auf diese Weise kann den Nachteilen klinischer Datensätze für die Entwicklung von Modellen des maschinellen Lernens entgegengewirkt werden. Dies trägt letztendlich zu einer frühzeitigen Erkennung der Arrhythmie bei, was eine rechtzeitige Auswahl geeigneter Behandlungsstrategien ermöglicht und somit das Schlaganfallrisiko der betroffenen Patienten verringert

    Quantifying atrial anatomy uncertainty from clinical data and its impact on electro-physiology simulation predictions

    Get PDF
    Patient-specific computational models of structure and function are increasingly being used to diagnose disease and predict how a patient will respond to therapy. Models of anatomy are often derived after segmentation of clinical images or from mapping systems which are affected by image artefacts, resolution and contrast. Quantifying the impact of uncertain anatomy on model predictions is important, as models are increasingly used in clinical practice where decisions need to be made regardless of image quality. We use a Bayesian probabilistic approach to estimate the anatomy and to quantify the uncertainty about the shape of the left atrium derived from Cardiac Magnetic Resonance images. We show that we can quantify uncertain shape, encode uncertainty about the left atrial shape due to imaging artefacts, and quantify the effect of uncertain shape on simulations of left atrial activation times

    Computational modelling of the human heart and multiscale simulation of its electrophysiological activity aimed at the treatment of cardiac arrhythmias related to ischaemia and Infarction

    Full text link
    [ES] Las enfermedades cardiovasculares constituyen la principal causa de morbilidad y mortalidad a nivel mundial, causando en torno a 18 millones de muertes cada año. De entre ellas, la más común es la enfermedad isquémica cardíaca, habitualmente denominada como infarto de miocardio (IM). Tras superar un IM, un considerable número de pacientes desarrollan taquicardias ventriculares (TV) potencialmente mortales durante la fase crónica del IM, es decir, semanas, meses o incluso años después la fase aguda inicial. Este tipo concreto de TV normalmente se origina por una reentrada a través de canales de conducción (CC), filamentos de miocardio superviviente que atraviesan la cicatriz del infarto fibrosa y no conductora. Cuando los fármacos anti-arrítmicos resultan incapaces de evitar episodios recurrentes de TV, la ablación por radiofrecuencia (ARF), un procedimiento mínimamente invasivo realizado mediante cateterismo en el laboratorio de electrofisiología (EF), se usa habitualmente para interrumpir de manera permanente la propagación eléctrica a través de los CCs responsables de la TV. Sin embargo, además de ser invasivo, arriesgado y requerir mucho tiempo, en casos de TVs relacionadas con IM crónico, hasta un 50% de los pacientes continúa padeciendo episodios recurrentes de TV tras el procedimiento de ARF. Por tanto, existe la necesidad de desarrollar nuevas estrategias pre-procedimiento para mejorar la planificación de la ARF y, de ese modo, aumentar esta tasa de éxito relativamente baja. En primer lugar, realizamos una revisión exhaustiva de la literatura referente a los modelos cardiacos 3D existentes, con el fin de obtener un profundo conocimiento de sus principales características y los métodos usados en su construcción, con especial atención sobre los modelos orientados a simulación de EF cardíaca. Luego, usando datos clínicos de un paciente con historial de TV relacionada con infarto, diseñamos e implementamos una serie de estrategias y metodologías para (1) generar modelos computacionales 3D específicos de paciente de ventrículos infartados que puedan usarse para realizar simulaciones de EF cardíaca a nivel de órgano, incluyendo la cicatriz del infarto y la región circundante conocida como zona de borde (ZB); (2) construir modelos 3D de torso que permitan la obtención del ECG simulado; y (3) llevar a cabo estudios in-silico de EF personalizados y pre-procedimiento, tratando de replicar los verdaderos estudios de EF realizados en el laboratorio de EF antes de la ablación. La finalidad de estas metodologías es la de localizar los CCs en el modelo ventricular 3D para ayudar a definir los objetivos de ablación óptimos para el procedimiento de ARF. Por último, realizamos el estudio retrospectivo por simulación de un caso, en el que logramos inducir la TV reentrante relacionada con el infarto usando diferentes configuraciones de modelado para la ZB. Validamos nuestros resultados mediante la reproducción, con una precisión razonable, del ECG del paciente en TV, así como en ritmo sinusal a partir de los mapas de activación endocárdica obtenidos invasivamente mediante sistemas de mapeado electroanatómico en este último caso. Esto permitió encontrar la ubicación y analizar las características del CC responsable de la TV clínica. Cabe destacar que dicho estudio in-silico de EF podría haberse efectuado antes del procedimiento de ARF, puesto que nuestro planteamiento está completamente basado en datos clínicos no invasivos adquiridos antes de la intervención real. Estos resultados confirman la viabilidad de la realización de estudios in-silico de EF personalizados y pre-procedimiento de utilidad, así como el potencial del abordaje propuesto para llegar a ser en un futuro una herramienta de apoyo para la planificación de la ARF en casos de TVs reentrantes relacionadas con infarto. No obstante, la metodología propuesta requiere de notables mejoras y validación por medio de es[CA] Les malalties cardiovasculars constitueixen la principal causa de morbiditat i mortalitat a nivell mundial, causant entorn a 18 milions de morts cada any. De elles, la més comuna és la malaltia isquèmica cardíaca, habitualment denominada infart de miocardi (IM). Després de superar un IM, un considerable nombre de pacients desenvolupen taquicàrdies ventriculars (TV) potencialment mortals durant la fase crònica de l'IM, és a dir, setmanes, mesos i fins i tot anys després de la fase aguda inicial. Aquest tipus concret de TV normalment s'origina per una reentrada a través dels canals de conducció (CC), filaments de miocardi supervivent que travessen la cicatriu de l'infart fibrosa i no conductora. Quan els fàrmacs anti-arítmics resulten incapaços d'evitar episodis recurrents de TV, l'ablació per radiofreqüència (ARF), un procediment mínimament invasiu realitzat mitjançant cateterisme en el laboratori de electrofisiologia (EF), s'usa habitualment per a interrompre de manera permanent la propagació elèctrica a través dels CCs responsables de la TV. No obstant això, a més de ser invasiu, arriscat i requerir molt de temps, en casos de TVs relacionades amb IM crònic fins a un 50% dels pacients continua patint episodis recurrents de TV després del procediment d'ARF. Per tant, existeix la necessitat de desenvolupar noves estratègies pre-procediment per a millorar la planificació de l'ARF i, d'aquesta manera, augmentar la taxa d'èxit, que es relativament baixa. En primer lloc, realitzem una revisió exhaustiva de la literatura referent als models cardíacs 3D existents, amb la finalitat d'obtindre un profund coneixement de les seues principals característiques i els mètodes usats en la seua construcció, amb especial atenció sobre els models orientats a simulació de EF cardíaca. Posteriorment, usant dades clíniques d'un pacient amb historial de TV relacionada amb infart, dissenyem i implementem una sèrie d'estratègies i metodologies per a (1) generar models computacionals 3D específics de pacient de ventricles infartats capaços de realitzar simulacions de EF cardíaca a nivell d'òrgan, incloent la cicatriu de l'infart i la regió circumdant coneguda com a zona de vora (ZV); (2) construir models 3D de tors que permeten l'obtenció del ECG simulat; i (3) dur a terme estudis in-silico de EF personalitzats i pre-procediment, tractant de replicar els vertaders estudis de EF realitzats en el laboratori de EF abans de l'ablació. La finalitat d'aquestes metodologies és la de localitzar els CCs en el model ventricular 3D per a ajudar a definir els objectius d'ablació òptims per al procediment d'ARF. Finalment, a manera de prova de concepte, realitzem l'estudi retrospectiu per simulació d'un cas, en el qual aconseguim induir la TV reentrant relacionada amb l'infart usant diferents configuracions de modelatge per a la ZV. Validem els nostres resultats mitjançant la reproducció, amb una precisió raonable, del ECG del pacient en TV, així com en ritme sinusal a partir dels mapes d'activació endocardíac obtinguts invasivament mitjançant sistemes de mapatge electro-anatòmic en aquest últim cas. Això va permetre trobar la ubicació i analitzar les característiques del CC responsable de la TV clínica. Cal destacar que aquest estudi in-silico de EF podria haver-se efectuat abans del procediment d'ARF, ja que el nostre plantejament està completament basat en dades clíniques no invasius adquirits abans de la intervenció real. Aquests resultats confirmen la viabilitat de la realització d'estudis in-silico de EF personalitzats i pre-procediment d'utilitat, així com el potencial de l'abordatge proposat per a arribar a ser en un futur una eina de suport per a la planificació de l'ARF en casos de TVs reentrants relacionades amb infart. No obstant això, la metodologia proposada requereix de notables millores i validació per mitjà d'estudis de simulació amb grans cohorts de pacients.[EN] Cardiovascular diseases represent the main cause of morbidity and mortality worldwide, causing around 18 million deaths every year. Among these diseases, the most common one is the ischaemic heart disease, usually referred to as myocardial infarction (MI). After surviving to a MI, a considerable number of patients develop life-threatening ventricular tachycardias (VT) during the chronic stage of the MI, that is, weeks, months or even years after the initial acute phase. This particular type of VT is typically sustained by reentry through slow conducting channels (CC), which are filaments of surviving myocardium that cross the non-conducting fibrotic infarct scar. When anti-arrhythmic drugs are unable to prevent recurrent VT episodes, radiofrequency ablation (RFA), a minimally invasive procedure performed by catheterization in the electrophysiology (EP) laboratory, is commonly used to interrupt the electrical conduction through the CCs responsible for the VT permanently. However, besides being invasive, risky and time-consuming, in the cases of VTs related to chronic MI, up to 50% of patients continue suffering from recurrent VT episodes after the RFA procedure. Therefore, there exists a need to develop novel pre-procedural strategies to improve RFA planning and, thereby, increase this relatively low success rate. First, we conducted an exhaustive review of the literature associated with the existing 3D cardiac models in order to gain a deep knowledge about their main features and the methods used for their construction, with special focus on those models oriented to simulation of cardiac EP. Later, using a clinical dataset of a chronically infarcted patient with a history of infarct-related VT, we designed and implemented a number of strategies and methodologies to (1) build patient-specific 3D computational models of infarcted ventricles that can be used to perform simulations of cardiac EP at the organ level, including the infarct scar and the surrounding region known as border zone (BZ); (2) construct 3D torso models that enable to compute the simulated ECG; and (3) carry out pre-procedural personalized in-silico EP studies, trying to replicate the actual EP studies conducted in the EP laboratory prior to the ablation. The goal of these methodologies is to allow locating the CCs into the 3D ventricular model in order to help in defining the optimal ablation targets for the RFA procedure. Lastly, as a proof-of-concept, we performed a retrospective simulation case study, in which we were able to induce an infarct-related reentrant VT using different modelling configurations for the BZ. We validated our results by reproducing with a reasonable accuracy the patient's ECG during VT, as well as in sinus rhythm from the endocardial activation maps invasively recorded via electroanatomical mapping systems in this latter case. This allowed us to find the location and analyse the features of the CC responsible for the clinical VT. Importantly, such in-silico EP study might have been conducted prior to the RFA procedure, since our approach is completely based on non-invasive clinical data acquired before the real intervention. These results confirm the feasibility of performing useful pre-procedural personalized in-silico EP studies, as well as the potential of the proposed approach to become a helpful tool for RFA planning in cases of infarct-related reentrant VTs in the future. Nevertheless, the developed methodology requires further improvements and validation by means of simulation studies including large cohorts of patients.During the carrying out of this doctoral thesis, the author Alejandro Daniel López Pérez was financially supported by the Ministerio de Economía, Industria y Competitividad of Spain through the program Ayudas para contratos predoctorales para la formación de doctores, with the grant number BES-2013-064089.López Pérez, AD. (2019). Computational modelling of the human heart and multiscale simulation of its electrophysiological activity aimed at the treatment of cardiac arrhythmias related to ischaemia and Infarction [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124973TESI

    Deep learning-based reduced order models in cardiac electrophysiology

    Full text link
    Predicting the electrical behavior of the heart, from the cellular scale to the tissue level, relies on the formulation and numerical approximation of coupled nonlinear dynamical systems. These systems describe the cardiac action potential, that is the polarization/depolarization cycle occurring at every heart beat that models the time evolution of the electrical potential across the cell membrane, as well as a set of ionic variables. Multiple solutions of these systems, corresponding to different model inputs, are required to evaluate outputs of clinical interest, such as activation maps and action potential duration. More importantly, these models feature coherent structures that propagate over time, such as wavefronts. These systems can hardly be reduced to lower dimensional problems by conventional reduced order models (ROMs) such as, e.g., the reduced basis (RB) method. This is primarily due to the low regularity of the solution manifold (with respect to the problem parameters) as well as to the nonlinear nature of the input-output maps that we intend to reconstruct numerically. To overcome this difficulty, in this paper we propose a new, nonlinear approach which exploits deep learning (DL) algorithms to obtain accurate and efficient ROMs, whose dimensionality matches the number of system parameters. Our DL approach combines deep feedforward neural networks (NNs) and convolutional autoencoders (AEs). We show that the proposed DL-ROM framework can efficiently provide solutions to parametrized electrophysiology problems, thus enabling multi-scenario analysis in pathological cases. We investigate three challenging test cases in cardiac electrophysiology and prove that DL-ROM outperforms classical projection-based ROMs.Comment: 28 page

    Modelling and Estimation of Spatiotemporal Cardiac Electrical Dynamics

    Get PDF
    The heart is a complex biological system in which electrical activation signals initiate at the pacemaker cells, propagate through the heart tissue to both trigger and synchronise the mechanical contractions. Abnormalities in the cardiac electrical signals lead to dangerous cardiac arrhythmias. Therefore, understanding the functionalities of the cardiac electrical activity is essential for the development of novel techniques to facilitate advanced diagnosis and treatment for arrhythmia. By combining experimental or clinical electrophysiology data with mathematical models, system theoretic approaches can be used to provide quantitative insights into the normal and pathological mechanisms of the cardiac electrical activity. This thesis proposes model-based estimation methods to reconstruct and quantify the underlying spatiotemporal cardiac electrical dynamics from the cardiac electrogram measurements. Firstly, a statistical model-based estimation framework is proposed to reconstruct the tissue dynamics from the cardiac electrogram measurements. The reconstruction of the tissue dynamics is based on an integrated model of cardiac electrical activity, which incorporates the cardiac action potential dynamics at the cell-level, tissue-level and extracellular-level. The dynamics of the cardiac tissue is described using the monodomain tissue model, which is coupled with the continuous version of modified Mitchell-Schaeffer model. The resulting model equations are of infinite-dimensional form, which is converted into a finite-dimensional state-space representation via a model reduction method. In order to estimate the hidden state variables of the tissue dynamics from the cardiac electrogram measurements, a combined detection-estimation framework using a single filter unscented-transform based smoothing algorithm is proposed. The detection step in the proposed method enables the inclusion of localised stimulus events into the model-based estimation framework. The performance of the proposed algorithms are demonstrated using the modelled cardiac activation patterns of normal and reentrant conditions, in both one-dimensional and two-dimensional tissue field. The findings from this proposed study illustrate that the hidden state variables of the tissue model can be estimated from the electrogram measurements, simultaneously by detecting the stimulus events. Therefore, this method shows that the complex spatiotemporal cardiac activity can be reconstructed from the coarse electrograms using the state estimation methods. Secondly, a complex network modelling approach is proposed to quantify the spatiotemporal organisation of electrical activation during human ventricular fibrillation. The proposed network modelling approach includes three different methods based on correlation analysis, graph theoretical measures and hierarchical clustering. Using the proposed approach, the level of spatiotemporal organisation is quantified during three episodes of VF in ten patients, recorded using multi-electrode epicardial recordings with 30 s coronary perfusion, 150 s global myocardial ischaemia and 30 s reflow. The findings show a steady decline in spatiotemporal organisation from the onset of VF with coronary perfusion. Following this, a transient increases in spatiotemporal organisation is observed during global myocardial ischaemia. However, the decline in spatiotemporal organisation continued during reflow. The results are consistent across all patients, and are consistent with the numbers of phase singularities. The findings show that the complex spatiotemporal patterns can be studied using complex network analysis

    Personalized Cardiac Computational Models: From Clinical Data to Simulation of Infarct-Related Ventricular Tachycardia

    Get PDF
    In the chronic stage of myocardial infarction, a significant number of patients develop life-threatening ventricular tachycardias (VT) due to the arrhythmogenic nature of the remodeled myocardium. Radiofrequency ablation (RFA) is a common procedure to isolate reentry pathways across the infarct scar that are responsible for VT. Unfortunately, this strategy show relatively low success rates; up to 50% of patients experience recurrent VT after the procedure. In the last decade, intensive research in the field of computational cardiac electrophysiology (EP) has demonstrated the ability of three-dimensional (3D) cardiac computational models to perform in-silico EP studies. However, the personalization and modeling of certain key components remain challenging, particularly in the case of the infarct border zone (BZ). In this study, we used a clinical dataset from a patient with a history of infarct-related VT to build an image-based 3D ventricular model aimed at computational simulation of cardiac EP, including detailed patient-specific cardiac anatomy and infarct scar geometry. We modeled the BZ in eight different ways by combining the presence or absence of electrical remodeling with four different levels of image-based patchy fibrosis (0, 10, 20, and 30%). A 3D torso model was also constructed to compute the ECG. Patient-specific sinus activation patterns were simulated and validated against the patient's ECG. Subsequently, the pacing protocol used to induce reentrant VTs in the EP laboratory was reproduced in-silico. The clinical VT was induced with different versions of the model and from different pacing points, thus identifying the slow conducting channel responsible for such VT. Finally, the real patient's ECG recorded during VT episodes was used to validate our simulation results and to assess different strategies to model the BZ. Our study showed that reduced conduction velocities and heterogeneity in action potential duration in the BZ are the main factors in promoting reentrant activity. Either electrical remodeling or fibrosis in a degree of at least 30% in the BZ were required to initiate VT. Moreover, this proof-of-concept study confirms the feasibility of developing 3D computational models for cardiac EP able to reproduce cardiac activation in sinus rhythm and during VT, using exclusively non-invasive clinical data

    Exploration of the Human Purkinje Network in Virtual Populations

    Get PDF
    This thesis investigates the Purkinje network (PN) and its dependency on the heart shape (HS) through cardiac simulation on virtual populations (VPs). The heart is a complex organ and essential to the wellbeing of humans; its dysfunction is responsible for more than 27% of all deaths in the UK. The PN delivers the activation impulse to the ventricles of the heart and ensures their synchronous activation. Thus, the morphology of the PN is important, but it varies between species and in vivo imaging is not feasible. However, computer simulation could provide an alternative experimental tool. In simulation of the cardiac electrophysiology, the PN is often replaced by stimulus points on the HS that are fitted to physiological measurements (heart activation times, ECG). Thus, not allowing the study of the PN morphology, nor studies of arrhythmia involving re-entry into the PN. In this thesis, three studies involving explicit models of PNs have been conducted. First, an efficient algorithm for solving electrophysiology models for the PN is introduced. These allow performing simulations of physiological activations. To minimise the time for simulations, parallelisation with CPU and GPU architectures are investigated, which is of interest for VP studies. In the second study, false tendons (FTs) are studied, which provide an additional connection from the left bundle branch (LBB) and are potentially beneficial in case of LBB block. Therefore, the reduction in activation times by FT is studied as a function of the HS. In the third study, an automatically generated VP is used to explore uncertainty in the PN morphology. The conjecture is that the PN structure adapts to the HS. The coverage of the septum and the minimum distance of the PN to the base are varied. The features of the resulting ECG are used to find the PN that gives maximally synchronised contraction

    A Novel Composite Material-based Computational Model for Left Ventricle Biomechanics Simulation

    Get PDF
    To model cardiac mechanics effectively, various mechanical characteristics of cardiac muscle tissue including anisotropy, hyperelasticity, and tissue active contraction characteristics must be considered. Some of these features cannot be implemented using commercial finite element (FE) solvers unless additional custom-developed computer codes/subroutines are appended. Such codes/subroutines are unavailable for the research community. Accordingly, the overarching objective of this research is to develop a novel LV mechanics model which is implementable in commercial FE solvers and can be used effectively within inverse FE frameworks towards cardiac disease diagnosis and therapy. This was broken down into a number of objectives. The first objective is to develop a novel cardiac tissue mechanical model. This model was constructed of microstructural cardiac tissue constituents while their associated volume contributions and mechanical properties were incorporated into the model. These constituents were organized in small FE tissue specimen models consistent with the normal/pathological cardiac tissue microstructure. In silico biaxial/uniaxial mechanical tests were conducted on the specimen models and corresponding stress-strain data were validated by comparing them with cardiac tissue data reported in the literature. Another objective of this research is developing a novel FE-based mechanical model of the LV which is fully implementable using commercial FE solvers without requiring further coding, potentially leading to a computationally efficient model which is easily adaptable to diverse pathological conditions. This was achieved through considering a novel composite material model of the cardiac tissue while all aspects of the cardiac mechanics including hyperelasticity, anisotropy, and active tissue responses were preserved. The model was applied to an in silico geometry of a canine LV under both normal and pathological conditions and systolic/diastolic responses of the model were compared with corresponding data of other LV mechanical models and LV contraction measurements. To test the suitability of the proposed cardiac model for FE inversion-based algorithms, the model was utilized for LV diastolic mechanical simulation to estimate the tissue stiffness and blood pressure using an ad-hoc optimization scheme. This led to reasonable tissue stiffness and blood pressure values falling within the range of LV measurements of healthy subjects, confirming the efficacy of this model for inversion-based diagnosis applications

    Modelling cardiac electrodynamics in larval zebrafish

    Get PDF
    Models of cardiac electrodynamics are useful tools in understanding electrical activities in heart. Currently, whole heart models often used a continuum approach, where the heart is treated as a syncytium. Models which incorporate the detailed cellular structure, have only been applied for sections of cardiac tissue. To date, no whole vertebrate heart models incorporating cellular details such as gap junctions have been developed, because of the computational power required. Therefore how detailed cellular arrangements and intercellular connectivity affect cardiac conduction at a whole heart level remains unclear. This thesis described such cell based models of larval zebrafish hearts. The model scales range from one cell, to cardiac tissue and then to the whole heart which were modelled with finite element modelling software. These models are able to reproduce published electrophysiological results including, the electrocardiogram, action potentials and conduction velocities in different regions. By varying in intercellular electrical connectivity, a cardiac condition: atrioventricular block was simulated which is comparable to experimental results qualitatively. As the models are able to estimate the gap junction resistances, they can be used in investigating the role of gap junctions in cardiac propagation. These models can be improved by adding more histological details in the future
    corecore