1,226 research outputs found

    Iterative Regularization for Learning with Convex Loss Functions

    Get PDF
    We consider the problem of supervised learning with convex loss functions and propose a new form of iterative regularization based on the subgradient method. Unlike other regularization approaches, in iterative regularization no constraint or penalization is considered, and generalization is achieved by (early) stopping an empirical iteration. We consider a nonparametric setting, in the framework of reproducing kernel Hilbert spaces, and prove finite sample bounds on the excess risk under general regularity conditions. Our study provides a new class of efficient regularized learning algorithms and gives insights on the interplay between statistics and optimization in machine learning

    Concept drift learning and its application to adaptive information filtering

    Get PDF
    Tracking the evolution of user interests is a problem instance of concept drift learning. Keeping track of multiple interest categories is a natural phenomenon as well as an interesting tracking problem because interests can emerge and diminish at different time frames. The first part of this dissertation presents a Multiple Three-Descriptor Representation (MTDR) algorithm, a novel algorithm for learning concept drift especially built for tracking the dynamics of multiple target concepts in the information filtering domain. The learning process of the algorithm combines the long-term and short-term interest (concept) models in an attempt to benefit from the strength of both models. The MTDR algorithm improves over existing concept drift learning algorithms in the domain. Being able to track multiple target concepts with a few examples poses an even more important and challenging problem because casual users tend to be reluctant to provide the examples needed, and learning from a few labeled data is generally difficult. The second part presents a computational Framework for Extending Incomplete Labeled Data Stream (FEILDS). The system modularly extends the capability of an existing concept drift learner in dealing with incomplete labeled data stream. It expands the learner's original input stream with relevant unlabeled data; the process generates a new stream with improved learnability. FEILDS employs a concept formation system for organizing its input stream into a concept (cluster) hierarchy. The system uses the concept and cluster hierarchy to identify the instance's concept and unlabeled data relevant to a concept. It also adopts the persistence assumption in temporal reasoning for inferring the relevance of concepts. Empirical evaluation indicates that FEILDS is able to improve the performance of existing learners particularly when learning from a stream with a few labeled data. Lastly, a new concept formation algorithm, one of the key components in the FEILDS architecture, is presented. The main idea is to discover intrinsic hierarchical structures regardless of the class distribution and the shape of the input stream. Experimental evaluation shows that the algorithm is relatively robust to input ordering, consistently producing a hierarchy structure of high quality

    Estimation of real traffic radiated emissions from electric vehicles in terms of the driving profile using neural networks

    Get PDF
    The increment of the use of electric vehicles leads to a worry about measuring its principal source of environmental pollution: electromagnetic emissions. Given the complexity of directly measuring vehicular radiated emissions in real traffic, the main contribution of this PhD thesis is to propose an indirect solution to estimate such type of vehicular emissions. Relating the on-road vehicular radiated emissions with the driving profile is a complicated task. This is because it is not possible to directly measure the vehicular radiated interferences in real traffic due to potential interferences from another electromagnetic wave sources. This thesis presents a microscopic artificial intelligence model based on neural networks to estimate real traffic radiated emissions of electric vehicles in terms of the driving dynamics. Instantaneous values of measured speed and calculated acceleration have been used to characterize the driving profile. Experimental electromagnetic interference tests have been carried out with a Vectrix electric motorcycle as well as Twizy electric cars in semi-anechoic chambers. Both the motorcycle and the car have been subjected to different urban and interurban driving profiles. Time Domain measurement methodology of electromagnetic radiated emissions has been adopted in this work to save the overall measurement time. The relationship between the magnetic radiated emissions of the Twizy and the corresponding speed has been very noticeable. Maximum magnetic field levels have been observed during high speed cruising in extra-urban driving and acceleration in urban environments. A comparative study of the prediction performance between various static and dynamic neural models has been introduced. The Multilayer Perceptron feedforward neural network trained with Extreme Learning Machines has achieved the best estimation results of magnetic radiated disturbances as function of instantaneous speed and acceleration. In this way, on-road magnetic radiated interferences from an electric vehicle equipped with a Global Positioning System can be estimated. This research line will allow quantify the pollutant electromagnetic emissions of electric vehicles and study new policies to preserve the environment

    Estimation of real traffic radiated emissions from electric vehicles in terms of the driving profile using neural networks

    Get PDF
    The increment of the use of electric vehicles leads to a worry about measuring its principal source of environmental pollution: electromagnetic emissions. Given the complexity of directly measuring vehicular radiated emissions in real traffic, the main contribution of this PhD thesis is to propose an indirect solution to estimate such type of vehicular emissions. Relating the on-road vehicular radiated emissions with the driving profile is a complicated task. This is because it is not possible to directly measure the vehicular radiated interferences in real traffic due to potential interferences from another electromagnetic wave sources. This thesis presents a microscopic artificial intelligence model based on neural networks to estimate real traffic radiated emissions of electric vehicles in terms of the driving dynamics. Instantaneous values of measured speed and calculated acceleration have been used to characterize the driving profile. Experimental electromagnetic interference tests have been carried out with a Vectrix electric motorcycle as well as Twizy electric cars in semi-anechoic chambers. Both the motorcycle and the car have been subjected to different urban and interurban driving profiles. Time Domain measurement methodology of electromagnetic radiated emissions has been adopted in this work to save the overall measurement time. The relationship between the magnetic radiated emissions of the Twizy and the corresponding speed has been very noticeable. Maximum magnetic field levels have been observed during high speed cruising in extra-urban driving and acceleration in urban environments. A comparative study of the prediction performance between various static and dynamic neural models has been introduced. The Multilayer Perceptron feedforward neural network trained with Extreme Learning Machines has achieved the best estimation results of magnetic radiated disturbances as function of instantaneous speed and acceleration. In this way, on-road magnetic radiated interferences from an electric vehicle equipped with a Global Positioning System can be estimated. This research line will allow quantify the pollutant electromagnetic emissions of electric vehicles and study new policies to preserve the environment

    An adaptable fuzzy-based model for predicting link quality in robot networks.

    Get PDF
    It is often essential for robots to maintain wireless connectivity with other systems so that commands, sensor data, and other situational information can be exchanged. Unfortunately, maintaining sufficient connection quality between these systems can be problematic. Robot mobility, combined with the attenuation and rapid dynamics associated with radio wave propagation, can cause frequent link quality (LQ) issues such as degraded throughput, temporary disconnects, or even link failure. In order to proactively mitigate such problems, robots must possess the capability, at the application layer, to gauge the quality of their wireless connections. However, many of the existing approaches lack adaptability or the framework necessary to rapidly build and sustain an accurate LQ prediction model. The primary contribution of this dissertation is the introduction of a novel way of blending machine learning with fuzzy logic so that an adaptable, yet intuitive LQ prediction model can be formed. Another significant contribution includes the evaluation of a unique active and incremental learning framework for quickly constructing and maintaining prediction models in robot networks with minimal sampling overhead

    POWER QUALITY CONTROL AND COMMON-MODE NOISE MITIGATION FOR INVERTERS IN ELECTRIC VEHICLES

    Get PDF
    Inverters are widely utilized in electric vehicle (EV) applications as a major voltage/current source for onboard battery chargers (OBC) and motor drive systems. The inverter performance is critical to the efficiency of EV system energy conversion and electronics system electro-magnetic interference (EMI) design. However, for AC systems, the bandwidth requirement is usually low compared with DC systems, and the control impact on the inverter differential-mode (DM) and common-mode (CM) performance are not well investigated. With the wide-band gap (WBG) device era, the switching capability of power electronics devices drastically improved. The DM/CM impact that was brought by the WBG device-based inverter becomes more serious and has not been completely understood. This thesis provides an in-depth analysis of on-board inverter control strategies and the corresponding DM/CM impact on the EV system. The OBC inverter control under vehicle-to-load (V2L) mode will be documented first. A virtual resistance damping method minimizes the nonlinear load harmonics, and a neutral balancing method regulates the unbalanced load impact through the fourth leg. In the motor drive system, a generalized CM voltage analytical model and a current ripple prediction model are built for understanding the system CM and DM stress with respect to different modulation methods, covering both 2-level and 3-level topologies. A novel CM EMI damping modulation scheme is proposed for 6-phase inverter applications. The performance comparison between the proposed methods and the conventional solution is carried out. Each topic is supported by the corresponding hardware platform and experimental validation
    • …
    corecore