16 research outputs found

    Implementation and modeling of a scheduled Optical Flow Switching (OFS) network

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (leaves 159-163).In this thesis we present analysis of Optical Flow Switching (OFS), an architectural approach for enabling all-optical user to user connections for transmission of Internet traffic. We first describe a demonstration of OFS on the ONRAMP test environment which is a MAN optical network implemented in hardware in the Boston geographic area. This demonstration shows the viability of OFS in an actual implementation, with good performance results and an assessment over OFS overheads. Then, we use stochastic models to quantify the behavior of an OFS network. Strong quantitative evidence leads us to draw the conclusion that scheduling is a necessary component of any architectural approach to implementing OFS in a Metro Area network (MAN).by Bishwaroop Ganguly.Ph.D

    Joint optimization of topology, switching, routing and wavelength assignment

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 279-285).To provide end users with economic access to high bandwidth, the architecture of the next generation metropolitan area networks (MANs) needs to be judiciously designed from the cost perspective. In addition to a low initial capital investment, the ultimate goal is to design networks that exhibit excellent scalability - a decreasing cost-per-node-per-unit-traffic as user number and transaction size increase. As an effort to achieve this goal, in this thesis we search for the scalable network architectures over the solution space that embodies the key aspects of optical networks: fiber connection topology, switching architecture selection and resource dimensioning, routing and wavelength assignment (RWA). Due to the inter-related nature of these design elements, we intended to solve the design problem jointly in the optimization process in order to achieve over-all good performance. To evaluate how the cost drives architectural tradeoffs, an analytical approach is taken in most parts of the thesis by first focusing on networks with symmetric and well defined structures (i.e., regular networks) and symmetric traffic patterns (i.e., all-to-all uniform traffic), which are fair representations that give us suggestions of trends, etc.(cont.) We starts with a examination of various measures of regular topologies. The average minimum hop distance plays a crucial role in evaluating the efficiency of network architecture. From the perspective of designing optical networks, the amount of switching resources used at nodes is proportional to the average minimum hop distance. Thus a smaller average minimum hop distance translates into a lower fraction of pass-through traffic and less switching resources required. Next, a first-order cost model is set up and an optimization problem is formulated for the purpose of characterizing the tradeoffs between fiber and switching resources. Via convex optimization techniques, the joint optimization problem is solved analytically for (static) uniform traffic and symmetric networks. Two classes of regular graphs - Generalized Moore Graphs and A-nearest Neighbors Graphs - are identified to yield lower and upper cost bounds, respectively. The investigation of the cost scalability further demonstrates the advantage of the Generalized Moore Graphs as benchmark topologies: with linear switching cost structure, the minimal normalized cost per unit traffic decreases with increasing network size for the Generalized Moore Graphs and their relatives.(cont.) In comparison, for less efficient fiber topologies (e.g., A-nearest Neighbors) and switching cost structures (e.g., quadratic cost), the minimal normalized cost per unit traffic plateaus or even increases with increasing network size. The study also reveals other attractive properties of Generalized Moore Graphs in conjunction with minimum hop routing - the aggregate network load is evenly distributed over each fiber. Thus, Generalized Moore Graphs also require the minimum number of wavelengths to support a given uniform traffic demand. Further more, the theoretical works on the Generalized Moore Graphs and their close relatives are extended to study more realistic design scenarios in two aspects. One aspect addresses the irregular topologies and (static) non-uniform traffic, for which the results of Generalized Moore networks are used to provide useful estimates of network cost, and are thus offering good references for cost-efficient optical networks. The other aspect deals with network design under random demands. Two optimization formulations that incorporate the traffic variability are presented.(cont.) The results show that as physical architecture, Generalized Moore Graphs are most robust (in cost) to the demand uncertainties. Analytical results also provided design guidelines on how optimum dimensioning, network connectivity, and network costs vary as functions of risk aversion, service level requirements, and probability distributions of demands.by Kyle Chi Guan.Ph.D

    Online Resource Allocation in Dynamic Optical Networks

    Get PDF
    Konventionelle, optische Transportnetze haben die Bereitstellung von High-Speed-Konnektivität in Form von langfristig installierten Verbindungen konstanter Bitrate ermöglicht. Die Einrichtungszeiten solcher Verbindungen liegen in der Größenordnung von Wochen, da in den meisten Fällen manuelle Eingriffe erforderlich sind. Nach der Installation bleiben die Verbindungen für Monate oder Jahre aktiv. Das Aufkommen von Grid Computing und Cloud-basierten Diensten bringt neue Anforderungen mit sich, die von heutigen optischen Transportnetzen nicht mehr erfüllt werden können. Dies begründet die Notwendigkeit einer Umstellung auf dynamische, optische Netze, welche die kurzfristige Bereitstellung von Bandbreite auf Nachfrage (Bandwidth on Demand - BoD) ermöglichen. Diese Netze müssen Verbindungen mit unterschiedlichen Bitratenanforderungen, mit zufälligen Ankunfts- und Haltezeiten und stringenten Einrichtungszeiten realisieren können. Grid Computing und Cloud-basierte Dienste führen in manchen Fällen zu Verbindungsanforderungen mit Haltezeiten im Bereich von Sekunden, wobei die Einrichtungszeiten im Extremfall in der Größenordnung von Millisekunden liegen können. Bei optischen Netzen für BoD muss der Verbindungsaufbau und -abbau, sowie das Netzmanagement ohne manuelle Eingriffe vonstattengehen. Die dafür notwendigen Technologien sind Flex-Grid-Wellenlängenmultiplexing, rekonfigurierbare optische Add / Drop-Multiplexer (ROADMs) und bandbreitenvariable, abstimmbare Transponder. Weiterhin sind Online-Ressourcenzuweisungsmechanismen erforderlich, um für jede eintreffende Verbindungsanforderung abhängig vom aktuellen Netzzustand entscheiden zu können, ob diese akzeptiert werden kann und welche Netzressourcen hierfür reserviert werden. Dies bedeutet, dass die Ressourcenzuteilung als Online-Optimierungsproblem behandelt werden muss. Die Entscheidungen sollen so getroffen werden, dass auf lange Sicht ein vorgegebenes Optimierungsziel erreicht wird. Die Ressourcenzuweisung bei dynamischen optischen Netzen lässt sich in die Teilfunktionen Routing- und Spektrumszuteilung (RSA), Verbindungsannahmekontrolle (CAC) und Dienstgütesteuerung (GoS Control) untergliedern. In dieser Dissertation wird das Problem der Online-Ressourcenzuteilung in dynamischen optischen Netzen behandelt. Es wird die Theorie der Markov-Entscheidungsprozesse (MDP) angewendet, um die Ressourcenzuweisung als Online-Optimierungsproblem zu formulieren. Die MDP-basierte Formulierung hat zwei Vorteile. Zum einen lassen sich verschiedene Optimierungszielfunktionen realisieren (z.B. die Minimierung der Blockierungswahrscheinlichkeiten oder die Maximierung der wirtschaftlichen Erlöse). Zum anderen lässt sich die Dienstgüte von Gruppen von Verbindungen mit spezifischen Verkehrsparametern gezielt beeinflussen (und damit eine gewisse GoS-Steuerung realisieren). Um das Optimierungsproblem zu lösen, wird in der Dissertation ein schnelles, adaptives und zustandsabhängiges Verfahren vorgestellt, dass im realen Netzbetrieb rekursiv ausgeführt wird und die Teilfunktionen RSA und CAC umfasst. Damit ist das Netz in der Lage, für jede eintreffende Verbindungsanforderung eine optimale Ressourcenzuweisung zu bestimmen. Weiterhin wird in der Dissertation die Implementierung des Verfahrens unter Verwendung eines 3-Way-Handshake-Protokolls für den Verbindungsaufbau betrachtet und ein analytisches Modell vorgestellt, um die Verbindungsaufbauzeit abzuschätzen. Die Arbeit wird abgerundet durch eine Bewertung der Investitionskosten (CAPEX) von dynamischen optischen Netzen. Es werden die wichtigsten Kostenfaktoren und die Beziehung zwischen den Kosten und der Performanz des Netzes analysiert. Die Leistungsfähigkeit aller in der Arbeit vorgeschlagenen Verfahren sowie die Genauigkeit des analytischen Modells zur Bestimmung der Verbindungsaufbauzeit wird durch umfangreiche Simulationen nachgewiesen.Conventional optical transport networks have leveraged the provisioning of high-speed connectivity in the form of long-term installed, constant bit-rate connections. The setup times of such connections are in the order of weeks, given that in most cases manual installation is required. Once installed, connections remain active for months or years. The advent of grid computing and cloud-based services brings new connectivity requirements which cannot be met by the present-day optical transport network. This has raised awareness on the need for a changeover to dynamic optical networks that enable the provisioning of bandwidth on demand (BoD) in the optical domain. These networks will have to serve connections with different bit-rate requirements, with random interarrival times and durations, and with stringent setup latencies. Ongoing research has shown that grid computing and cloud-based services may in some cases request connections with holding times ranging from seconds to hours, and with setup latencies that must be in the order of milliseconds. To provide BoD, dynamic optical networks must perform connection setup, maintenance and teardown without manual labour. For that, software-configurable networks are needed that are deployed with enough capacity to automatically establish connections. Recently, network architectures have been proposed for that purpose that embrace flex-grid wavelength division multiplexing, reconfigurable optical add/drop multiplexers, and bandwidth variable and tunable transponders as the main technology drivers. To exploit the benefits of these technologies, online resource allocation methods are necessary to ensure that during network operation the installed capacity is efficiently assigned to connections. As connections may arrive and depart randomly, the traffic matrix is unknown, and hence, each connection request submitted to the network has to be processed independently. This implies that resource allocation must be tackled as an online optimization problem which for each connection request, depending on the network state, decides whether the request is admitted or rejected. If admitted, a further decision is made on which resources are assigned to the connection. The decisions are so calculated that, in the long-run, a desired performance objective is optimized. To achieve its goal, resource allocation implements control functions for routing and spectrum allocation (RSA), connection admission control (CAC), and grade of service (GoS) control. In this dissertation we tackle the problem of online resource allocation in dynamic optical networks. For that, the theory of Markov decision processes (MDP) is applied to formulate resource allocation as an online optimization problem. An MDP-based formulation has two relevant advantages. First, the problem can be solved to optimize an arbitrarily defined performance objective (e.g. minimization of blocking probability or maximization of economic revenue). Secondly, it can provide GoS control for groups of connections with different statistical properties. To solve the optimization problem, a fast, adaptive and state-dependent online algorithm is proposed to calculate a resource allocation policy. The calculation is performed recursively during network operation, and uses algorithms for RSA and CAC. The resulting policy is a course of action that instructs the network how to process each connection request. Furthermore, an implementation of the method is proposed that uses a 3-way handshake protocol for connection setup, and an analytical performance evaluation model is derived to estimate the connection setup latency. Our study is complemented by an evaluation of the capital expenditures of dynamic optical networks. The main cost drivers are identified. The performance of the methods proposed in this thesis, including the accuracy of the analytical evaluation of the connection setup latency, were evaluated by simulations. The contributions from the thesis provide a novel approach that meets the requirements envisioned for resource allocation in dynamic optical networks

    Feed-forward linearisation of a directly modulated semiconductor laser and broadband millimetre-wave wireless over fibre systems.

    Get PDF
    This thesis is concerned with reduction of non-linear distortion in a directly modulated uncooled semiconductor laser using feed-forward compensation and investigating the performance of broadband millimetre-wave wireless over fibre systems. One of the key elements that determine the performance in a fibre optic link is the linearity of the optical source. Direct modulation of an uncooled semiconductor laser diode is a simple and cost effective solution. However, the distortion and noise generated by the laser limit the achievable dynamic range and performance in a system. Feed-forward linearisation is demonstrated at 5 GHz, the highest operating frequency reported, with 26 dB third order intermodulation distortion suppression and simultaneous noise reduction leading to enhanced spurious free dynamic range of 107 dB (1Hz). The effectiveness of feed-forward in a multi-channel system is investigated. Laser non-linearity can cause spectral re-growth and interchannel distortion that can completely mask the adjacent channel. A significant 11 dB interchannel distortion suppression and 10.5 dB power advantage is obtained compared to the non-linearised case. These results suggest that feed-forward linearisation arrangement can make a practical multi-channel or multi-operator wireless over fibre system. In the second part of this thesis the first experimental transmission of wireless data over fibre with remote millimetre-wave local oscillator delivery using a bi-directional semiconductor optical amplifier in a full duplex system with 2.2 km coarse wavelength division multiplexing fibre ring architecture is demonstrated. The use of bi-directional SOAs in place of unidirectional erbium doped fibre amplifier or unidirectional SOAs, together with the use of CWDM and optical distribution of the local oscillator signal allow substantial reduction in overall complexity and cost. Successful transmission of data over 12.8 km fibre is achieved with clear and well defined constellations and eye diagrams as well as 10.5% and 7.8 % error vector magnitude values for the downlink and uplink directions, respectively. The thesis also presents an implementation and performance of a millimetre-wave gigabit wireless over fibre system. CWDM devices such as uncooled laser diodes and passive components are used for the first time in a gigabit system allowing cost savings compared to dense WDM. This makes such solutions more attractive for millimetre-wave access systems. Optically modulated gigabit wireless data signals to and from the base stations are distributed at 5 GHz and up-converted using a remotely delivered LO source. Eye diagrams and bit error rate are measured to assess the system performance

    Project BeARCAT : Baselining, Automation and Response for CAV Testbed Cyber Security : Connected Vehicle & Infrastructure Security Assessment

    Get PDF
    Connected, software-based systems are a driver in advancing the technology of transportation systems. Advanced automated and autonomous vehicles, together with electrification, will help reduce congestion, accidents and emissions. Meanwhile, vehicle manufacturers see advanced technology as enhancing their products in a competitive market. However, as many decades of using home and enterprise computer systems have shown, connectivity allows a system to become a target for criminal intentions. Cyber-based threats to any system are a problem; in transportation, there is the added safety implication of dealing with moving vehicles and the passengers within

    Techno-economic analysis of software-defined telecommunications networks

    Get PDF

    Design and Performance of Scalable High-Performance Programmable Routers - Doctoral Dissertation, August 2002

    Get PDF
    The flexibility to adapt to new services and protocols without changes in the underlying hardware is and will increasingly be a key requirement for advanced networks. Introducing a processing component into the data path of routers and implementing packet processing in software provides this ability. In such a programmable router, a powerful processing infrastructure is necessary to achieve to level of performance that is comparable to custom silicon-based routers and to demonstrate the feasibility of this approach. This work aims at the general design of such programmable routers and, specifically, at the design and performance analysis of the processing subsystem. The necessity of programmable routers is motivated, and a router design is proposed. Based on the design, a general performance model is developed and quantitatively evaluated using a new network processor benchmark. Operational challenges, like scheduling of packets to processing engines, are addressed, and novel algorithms are presented. The results of this work give qualitative and quantitative insights into this new domain that combines issues from networking, computer architecture, and system design
    corecore