165 research outputs found

    Accounting for variance and hyperparameter optimization in machine learning benchmarks

    Full text link
    La récente révolution de l'apprentissage automatique s'est fortement appuyée sur l'utilisation de bancs de test standardisés. Ces derniers sont au centre de la méthodologie scientifique en apprentissage automatique, fournissant des cibles et mesures indéniables des améliorations des algorithmes d'apprentissage. Ils ne garantissent cependant pas la validité des résultats ce qui implique que certaines conclusions scientifiques sur les avancées en intelligence artificielle peuvent s'avérer erronées. Nous abordons cette question dans cette thèse en soulevant d'abord la problématique (Chapitre 5), que nous étudions ensuite plus en profondeur pour apporter des solutions (Chapitre 6) et finalement developpons un nouvel outil afin d'amélioration la méthodologie des chercheurs (Chapitre 7). Dans le premier article, chapitre 5, nous démontrons la problématique de la reproductibilité pour des bancs de test stables et consensuels, impliquant que ces problèmes sont endémiques aussi à de grands ensembles d'applications en apprentissage automatique possiblement moins stable et moins consensuels. Dans cet article, nous mettons en évidence l'impact important de la stochasticité des bancs de test, et ce même pour les plus stables tels que la classification d'images. Nous soutenons d'après ces résultats que les solutions doivent tenir compte de cette stochasticité pour améliorer la reproductibilité des bancs de test. Dans le deuxième article, chapitre 6, nous étudions les différentes sources de variation typiques aux bancs de test en apprentissage automatique, mesurons l'effet de ces variations sur les méthodes de comparaison d'algorithmes et fournissons des recommandations sur la base de nos résultats. Une contribution importante de ce travail est la mesure de la fiabilité d'estimateurs peu coûteux à calculer mais biaisés servant à estimer la performance moyenne des algorithmes. Tel qu'expliqué dans l'article, un estimateur idéal implique plusieurs exécution d'optimisation d'hyperparamètres ce qui le rend trop coûteux à calculer. La plupart des chercheurs doivent donc recourir à l'alternative biaisée, mais nous ne savions pas jusqu'à présent la magnitude de la dégradation de cet estimateur. Sur la base de nos résultats, nous fournissons des recommandations pour la comparison d'algorithmes sur des bancs de test avec des budgets de calculs limités. Premièrement, les sources de variations devraient être randomisé autant que possible. Deuxièmement, la randomization devrait inclure le partitionnement aléatoire des données pour les ensembles d'entraînement, de validation et de test, qui s'avère être la plus importante des sources de variance. Troisièmement, des tests statistiques tel que la version du Mann-Withney U-test présenté dans notre article devrait être utilisé plutôt que des comparisons sur la simple base de moyennes afin de prendre en considération l'incertitude des mesures de performance. Dans le chapitre 7, nous présentons un cadriciel d'optimisation d'hyperparamètres développé avec principal objectif de favoriser les bonnes pratiques d'optimisation des hyperparamètres. Le cadriciel est conçu de façon à privilégier une interface simple et intuitive adaptée aux habitudes de travail des chercheurs en apprentissage automatique. Il inclut un nouveau système de versionnage d'expériences afin d'aider les chercheurs à organiser leurs itérations expérimentales et tirer profit des résultats antérieurs pour augmenter l'efficacité de l'optimisation des hyperparamètres. L'optimisation des hyperparamètres joue un rôle important dans les bancs de test, les hyperparamètres étant un facteur confondant significatif. Fournir aux chercheurs un instrument afin de bien contrôler ces facteurs confondants est complémentaire aux recommandations pour tenir compte des sources de variation dans le chapitre 6. Nos recommendations et l'outil pour l'optimisation d'hyperparametre offre une base solide pour une méthodologie robuste et fiable.The recent revolution in machine learning has been strongly based on the use of standardized benchmarks. Providing clear target metrics and undeniable measures of improvements of learning algorithms, they are at the center of the scientific methodology in machine learning. They do not ensure validity of results however, therefore some scientific conclusions based on flawed methodology may prove to be wrong. In this thesis we address this question by first raising the issue (Chapter 5), then we study it to find solutions and recommendations (Chapter 6) and build tools to help improve the methodology of researchers (Chapter 7). In first article, Chapter 5, we demonstrate the issue of reproducibility in stable and consensual benchmarks, implying that these issues are endemic to a large ensemble of machine learning applications that are possibly less stable or less consensual. We raise awareness of the important impact of stochasticity even in stable image classification tasks and contend that solutions for reproducible benchmarks should account for this stochasticity. In second article, Chapter 6, we study the different sources of variation that are typical in machine learning benchmarks, measure their effect on comparison methods to benchmark algorithms and provide recommendations based on our results. One important contribution of this work is that we measure the reliability of a cheaper but biased estimator for the average performance of algorithms. As explained in the article, an ideal estimator involving multiple rounds of hyperparameter optimization is too computationally expensive. Most researchers must resort to use the biased alternative, but it has been unknown until now how serious a degradation of the quality of estimation this leads to. Our investigations provides guidelines for benchmarks on practical budgets. First, as many sources of variations as possible should be randomized. Second, the partitioning of data in training, validation and test sets should be randomized as well, since this is the most important source of variation. Finally, statistical tests should be used instead of ad-hoc average comparisons so that the uncertainty of performance estimation can be accounted for when comparing machine learning algorithms. In Chapter 7, we present a framework for hyperparameter optimization that has been developed with the main goal of encouraging best practices for hyperparameter optimization. The framework is designed to favor a simple and intuitive interface adapted to the workflow of machine learning researchers. It includes a new version control system for experiments to help researchers organize their rounds of experimentations and leverage prior results for more efficient hyperparameter optimization. Hyperparameter optimization plays an important role in benchmarking, with the effect of hyperparameters being a serious confounding factor. Providing an instrument for researchers to properly control this confounding factor is complementary to our guidelines to account for sources of variation in Chapter 7. Our recommendations together with our tool for hyperparameter optimization provides a solid basis for a reliable methodology in machine learning benchmarks

    Metalearning

    Get PDF
    This open access book as one of the fastest-growing areas of research in machine learning, metalearning studies principled methods to obtain efficient models and solutions by adapting machine learning and data mining processes. This adaptation usually exploits information from past experience on other tasks and the adaptive processes can involve machine learning approaches. As a related area to metalearning and a hot topic currently, automated machine learning (AutoML) is concerned with automating the machine learning processes. Metalearning and AutoML can help AI learn to control the application of different learning methods and acquire new solutions faster without unnecessary interventions from the user. This book offers a comprehensive and thorough introduction to almost all aspects of metalearning and AutoML, covering the basic concepts and architecture, evaluation, datasets, hyperparameter optimization, ensembles and workflows, and also how this knowledge can be used to select, combine, compose, adapt and configure both algorithms and models to yield faster and better solutions to data mining and data science problems. It can thus help developers to develop systems that can improve themselves through experience. This book is a substantial update of the first edition published in 2009. It includes 18 chapters, more than twice as much as the previous version. This enabled the authors to cover the most relevant topics in more depth and incorporate the overview of recent research in the respective area. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining, data science and artificial intelligence. ; Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence

    Deep Learning for Detection and Segmentation in High-Content Microscopy Images

    Get PDF
    High-content microscopy led to many advances in biology and medicine. This fast emerging technology is transforming cell biology into a big data driven science. Computer vision methods are used to automate the analysis of microscopy image data. In recent years, deep learning became popular and had major success in computer vision. Most of the available methods are developed to process natural images. Compared to natural images, microscopy images pose domain specific challenges such as small training datasets, clustered objects, and class imbalance. In this thesis, new deep learning methods for object detection and cell segmentation in microscopy images are introduced. For particle detection in fluorescence microscopy images, a deep learning method based on a domain-adapted Deconvolution Network is presented. In addition, a method for mitotic cell detection in heterogeneous histopathology images is proposed, which combines a deep residual network with Hough voting. The method is used for grading of whole-slide histology images of breast carcinoma. Moreover, a method for both particle detection and cell detection based on object centroids is introduced, which is trainable end-to-end. It comprises a novel Centroid Proposal Network, a layer for ensembling detection hypotheses over image scales and anchors, an anchor regularization scheme which favours prior anchors over regressed locations, and an improved algorithm for Non-Maximum Suppression. Furthermore, a novel loss function based on Normalized Mutual Information is proposed which can cope with strong class imbalance and is derived within a Bayesian framework. For cell segmentation, a deep neural network with increased receptive field to capture rich semantic information is introduced. Moreover, a deep neural network which combines both paradigms of multi-scale feature aggregation of Convolutional Neural Networks and iterative refinement of Recurrent Neural Networks is proposed. To increase the robustness of the training and improve segmentation, a novel focal loss function is presented. In addition, a framework for black-box hyperparameter optimization for biomedical image analysis pipelines is proposed. The framework has a modular architecture that separates hyperparameter sampling and hyperparameter optimization. A visualization of the loss function based on infimum projections is suggested to obtain further insights into the optimization problem. Also, a transfer learning approach is presented, which uses only one color channel for pre-training and performs fine-tuning on more color channels. Furthermore, an approach for unsupervised domain adaptation for histopathological slides is presented. Finally, Galaxy Image Analysis is presented, a platform for web-based microscopy image analysis. Galaxy Image Analysis workflows for cell segmentation in cell cultures, particle detection in mice brain tissue, and MALDI/H&E image registration have been developed. The proposed methods were applied to challenging synthetic as well as real microscopy image data from various microscopy modalities. It turned out that the proposed methods yield state-of-the-art or improved results. The methods were benchmarked in international image analysis challenges and used in various cooperation projects with biomedical researchers

    16th SC@RUG 2019 proceedings 2018-2019

    Get PDF

    Tomografia estendida : do básico até o mapeamento de cérebro de camundongos

    Get PDF
    Orientador: Mateus Borba CardosoTese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb WataghinResumo: Esta tese apresentará uma introdução a imagens de raios-x e como adquirir e processar imagens usando linhas de luz síncrotron. Apresentará os desafios matemáticos e técnicos para reconstruir amostras em três dimensões usando a reconstrução de Tomografia Computadorizada, uma técnica conhecida como CT. Esta técnica tem seu campo de visão limitado ao tamanho da câmera e ao tamanho da iluminação. Uma técnica para ampliar esse campo de visão vai ser apresentada e os desafios técnicos envolvidos para que isso aconteça. Um \textit{pipeline} é proposto e todos os algoritmos necessários foram empacotados em um pacote python chamado Tomosaic. A abordagem baseia-se em adquirir tomogramas parciais em posiçoes pré definidas e depois mesclar os dados em um novo conjunto de dados. Duas maneiras possíveis são apresentadas para essa mescla, uma no domínio das projeções e uma no domínio dos sinogramas. Experimentos iniciais serão então usadas para mostrar que o método proposto funciona com computadores normais. A técnica será aplicada mais tarde para pesquisar a anatomia de cérebros de camundongo completos. Um estudo será apresentado de como obter informação em diferentes escalas do cérebro completo do rato utilizando raios-xAbstract: This thesis will present an introduction to x-ray images and how to acquire and thread images using synchrotron beamlines. It will present the mathematical and technical challenges to reconstruct samples in three dimensions using Computed Tomography reconstruction, a technique known as CT. This technique has a field of view bounded to the camera size and the illumination size. A technique to extended this field of view is going to be presented and the technical challenges involved in order for that to happen will be described. A pipeline is proposed and all the necessary algorithms are contained into a python packaged called Tomosaic. The approach relies on acquired partial tomogram data in a defined grid and later merging the data into a new dataset. Two possible ways are presented in order to that: in the projection domain, and in the sinogram domain. Initial experiments will then be used to show that the pipeline works with normal computers. The technique will be later applied to survey the whole anatomy of whole mouse brains. A study will be shown of how to get the complete range of scales of the mouse brain using x-ray tomography at different resolutionsDoutoradoFísicaDoutor em Ciências163304/2013-01247445/2013, 1456912/2014CNPQCAPE
    • …
    corecore