13,204 research outputs found

    Operational one-to-one mapping between coherence and entanglement measures

    Full text link
    We establish a general operational one-to-one mapping between coherence measures and entanglement measures: Any entanglement measure of bipartite pure states is the minimum of a suitable coherence measure over product bases. Any coherence measure of pure states, with extension to mixed states by convex roof, is the maximum entanglement generated by incoherent operations acting on the system and an incoherent ancilla. Remarkably, the generalized CNOT gate is the universal optimal incoherent operation. In this way, all convex-roof coherence measures, including the coherence of formation, are endowed with (additional) operational interpretations. By virtue of this connection, many results on entanglement can be translated to the coherence setting, and vice versa. As applications, we provide tight observable lower bounds for generalized entanglement concurrence and coherence concurrence, which enable experimentalists to quantify entanglement and coherence of the maximal dimension in real experiments.Comment: 14 pages, 1 figure, new results added, published in PR

    Measuring coherence of quantum measurements

    Full text link
    The superposition of quantum states lies at the heart of physics and has been recently found to serve as a versatile resource for quantum information protocols, defining the notion of quantum coherence. In this contribution, we report on the implementation of its complementary concept, coherence from quantum measurements. By devising an accessible criterion which holds true in any classical statistical theory, we demonstrate that noncommutative quantum measurements violate this constraint, rendering it possible to perform an operational assessment of the measurement-based quantum coherence. In particular, we verify that polarization measurements of a single photonic qubit, an essential carrier of one unit of quantum information, are already incompatible with classical, i.e., incoherent, models of a measurement apparatus. Thus, we realize a method that enables us to quantitatively certify which quantum measurements follow fundamentally different statistical laws than expected from classical theories and, at the same time, quantify their usefulness within the modern framework of resources for quantum information technology.Comment: close to published versio
    corecore