12,202 research outputs found

    Integrating remote sensing datasets into ecological modelling: a Bayesian approach

    Get PDF
    Process-based models have been used to simulate 3-dimensional complexities of forest ecosystems and their temporal changes, but their extensive data requirement and complex parameterisation have often limited their use for practical management applications. Increasingly, information retrieved using remote sensing techniques can help in model parameterisation and data collection by providing spatially and temporally resolved forest information. In this paper, we illustrate the potential of Bayesian calibration for integrating such data sources to simulate forest production. As an example, we use the 3-PG model combined with hyperspectral, LiDAR, SAR and field-based data to simulate the growth of UK Corsican pine stands. Hyperspectral, LiDAR and SAR data are used to estimate LAI dynamics, tree height and above ground biomass, respectively, while the Bayesian calibration provides estimates of uncertainties to model parameters and outputs. The Bayesian calibration contrasts with goodness-of-fit approaches, which do not provide uncertainties to parameters and model outputs. Parameters and the data used in the calibration process are presented in the form of probability distributions, reflecting our degree of certainty about them. After the calibration, the distributions are updated. To approximate posterior distributions (of outputs and parameters), a Markov Chain Monte Carlo sampling approach is used (25 000 steps). A sensitivity analysis is also conducted between parameters and outputs. Overall, the results illustrate the potential of a Bayesian framework for truly integrative work, both in the consideration of field-based and remotely sensed datasets available and in estimating parameter and model output uncertainties

    Addressing Uncertainty in TMDLS: Short Course at Arkansas Water Resources Center 2001 Annual Conference

    Get PDF
    Management of a critical natural resource like water requires information on the status of that resource. The US Environmental Protection Agency (EPA) reported in the 1998 National Water Quality Inventory that more than 291,000 miles of assessed rivers and streams and 5 million acres of lakes do not meet State water quality standards. This inventory represents a compilation of State assessments of 840,000 miles of rivers and 17.4 million acres of lakes; a 22 percent increase in river miles and 4 percent increase in lake acres over their 1996 reports. Siltation, bacteria, nutrients and metals were the leading pollutants of impaired waters, according to EPA. The sources of these pollutants were presumed to be runoff from agricultural lands and urban areas. EPA suggests that the majority of Americans-over 218 million-live within ten miles of a polluted waterbody. This seems to contradict the recent proclamations of the success of the Clean Water Act, the Nation\u27s water pollution control law. EPA also claims that, while water quality is still threatened in the US, the amount of water safe for fishing and swimming has doubled since 1972, and that the number of people served by sewage treatment plants has more than doubled

    Modeling physical and chemical climate of the northeastern United States for a geographic information system

    Get PDF
    A model of physical and chemical climate was developed for New York and New England that can be used in a GIs for integration with ecosystem models. The variables included are monthly average maximum and minimum daily temperatures, precipitation, humidity, and solar radiation, as well as annual atmospheric deposition of sulfur and nitrogen. Equations generated from regional data bases were combined with a digital elevation model of the region to generate digital coverages of each variable

    High resolution spatial variability in spring snowmelt for an Arctic shrub-tundra watershed

    Get PDF
    Arctic tundra environments are characterized by spatially heterogeneous end-of-winter snow cover because of high winds that erode, transport and deposit snow over the winter. This spatially variable end-of-winter snow cover subsequently influences the spatial and temporal variability of snowmelt and results in a patchy snowcover over the melt period. Documenting changes in both snow cover area (SCA) and snow water equivalent (SWE) during the spring melt is essential for understanding hydrological systems, but the lack of high-resolution SCA and SWE datasets that accurately capture micro-scale changes are not commonly available, and do not exist for the Canadian Arctic. This study applies high-resolution remote sensing measurements of SCA and SWE using a fixed-wing Unmanned Aerial System (UAS) to document snowcover changes over the snowmelt period for an Arctic tundra headwater catchment. Repeat measurements of SWE and SCA were obtained for four dominant land cover types (tundra, short shrub, tall shrub, and topographic drift) to provide observations of spatially distributed snowmelt patterns and basin-wide declines in SWE. High-resolution analysis of snowcover conditions over the melt reveal a strong relationship between land cover type, snow distribution, and snow ablation rates whereby shallow snowpacks found in tundra and short shrub regions feature rapid declines in SWE and SCA and became snow-free approximately 10 days earlier than deeper snowpacks. In contrast, tall shrub patches and topographic drift regions were characterized by large initial SWE values and featured a slow decline in SCA. Analysis of basin-wide declines in SCA and SWE reveal three distinct melt phases characterized by 1) low melt rates across a large area resulting in a minor change in SCA, but a very large decline in SWE with, 2) high melt rates resulting in drastic declines in both SCA and SWE, and 3) low melt rates over a small portion of the basin, resulting in little change to either SCA or SWE. The ability to capture high-resolution spatio-temporal changes to tundra snow cover furthers our understanding of the relative importance of various land cover types on the snowmelt timing and amount of runoff available to the hydrological system during the spring freshet

    USE OF LIDAR-DERIVED TERRAIN AND VEGETATION INFORMATION IN A DECIDUOUS FOREST IN KENTUCKY

    Get PDF
    The use of Light Detection and Ranging (LiDAR) information is gaining popularity, however its use has been limited in deciduous forests. This thesis describes two studies using LiDAR data in an Eastern Kentucky deciduous forest. The first study quantifies vertical error of LiDAR derived digital elevation models (DEMs) which describe the forests terrain. The study uses a new method which eliminates Global Positioning System (GPS) error. The study found that slope and slope variability both significantly affect DEM error and should be taken in to account when using LiDAR derived DEMs. The second study uses LiDAR derived forest vegetation and terrain metrics to predict terrestrial Plethodontid salamander abundance across the forest. This study used night time visual encounter surveys coupled with zero-inflation modeling to predict salamander abundance based on environmental covariates. We focused on two salamander species, Plethodon glutinosus and Plethodon kentucki. Our methods produced two different best fit models for the two species. Plethodon glutinosus included vegetation height standard deviation and water flow accumulation covariates, while Plethodon kentucki included only canopy cover as a covariate. These methods are applicable to many different species and can be very useful for focusing management efforts and understanding species distributions across the landscape

    Soil erosion in the Alps : causes and risk assessment

    Get PDF
    The issue of soil erosion in the Alps has long been neglected due to the low economic value of the agricultural land. However, soil stability is a key parameter which affects ecosystem services like slope stability, water budgets (drinking water reservoirs as well as flood prevention), vegetation productivity, ecosystem biodiversity and nutrient production. In alpine regions, spatial estimates on soil erosion are difficult to derive because the highly heterogeneous biogeophysical structure impedes measurement of soil erosion and the applicability of soil erosion models. However, remote sensing and geographic information system (GIS) methods allow for spatial estimation of soil erosion by direct detection of erosion features and supply of input data for soil erosion models. Thus, the main objective of this work is to address the problem of soil erosion risk assessment in the Alps on catchment scale with remote sensing and GIS tools. Regarding soil erosion processes the focus is on soil erosion by water (here sheet erosion) and gravity (here landslides). For these two processes we address i) the monitoring and mapping of the erosion features and related causal factors ii) soil erosion risk assessment with special emphasis on iii) the validation of existing models for alpine areas. All investigations were accomplished in the Urseren Valley (Central Swiss Alps) where the valley slopes are dramatically affected by sheet erosion and landslides. For landslides, a natural susceptibility of the catchment has been indicated by bivariate and multivariate statistical analysis. Geology, slope and stream density are the most significant static landslide causal factors. Static factors are here defined as factors that do not change their attributes during the considered time span of the study (45 years), e.g. geology, stream network. The occurrence of landslides might be significantly increased by the combined effects of global climate and land use change. Thus, our hypothesis is that more recent changes in land use and climate affected the spatial and temporal occurrence of landslides. The increase of the landslide area of 92% within 45 years in the study site confirmed our hypothesis. In order to identify the cause for the trend in landslide occurrence time-series of landslide causal factors were analysed. The analysis revealed increasing trends in the frequency and intensity of extreme rainfall events and stocking of pasture animals. These developments presumably enhanced landslide hazard. Moreover, changes in land-cover and land use were shown to have affected landslide occurrence. For instance, abandoned areas and areas with recently emerging shrub vegetation show very low landslide densities. Detailed spatial analysis of the land use with GIS and interviews with farmers confirmed the strong influence of the land use management practises on slope stability. The definite identification and quantification of the impact of these non-stationary landslide causal factors (dynamic factors) on the landslide trend was not possible due to the simultaneous change of several factors. The consideration of dynamic factors in statistical landslide susceptibility assessments is still unsolved. The latter may lead to erroneous model predictions, especially in times of dramatic environmental change. Thus, we evaluated the effect of dynamic landslide causal factors on the validity of landslide susceptibility maps for spatial and temporal predictions. For this purpose, a logistic regression model based on data of the year 2000 was set up. The resulting landslide susceptibility map was valid for spatial predictions. However, the model failed to predict the landslides that occurred in a subsequent event. In order to handle this weakness of statistic landslide modelling a multitemporal approach was developed. It is based on establishing logistic regression models for two points in time (here 1959 and 2000). Both models could correctly classify >70% of the independent spatial validation dataset. By subtracting the 1959 susceptibility map from the 2000 susceptibility map a deviation susceptibility map was obtained. Our interpretation was that these susceptibility deviations indicate the effect of dynamic causal factors on the landslide probability. The deviation map explained 85% of new independent landslides occurring after 2000. Thus, we believe it to be a suitable tool to add a time element to a susceptibility map pointing to areas with changing susceptibility due to recently changing environmental conditions or human interactions. In contrast to landslides that are a direct threat to buildings and infrastructure, sheet erosion attracts less attention because it is often an unseen process. Nonetheless, sheet erosion may account for a major proportion of soil loss. Soil loss by sheet erosion is related to high spatial variability, however, in contrast to arable fields for alpine grasslands erosion damages are long lasting and visible over longer time periods. A crucial erosion triggering parameter that can be derived from satellite imagery is fractional vegetation cover (FVC). Measurements of the radiogenic isotope Cs-137, which is a common tracer for soil erosion, confirm the importance of FVC for soil erosion yield in alpine areas. Linear spectral unmixing (LSU), mixture tuned matched filtering (MTMF) and the spectral index NDVI are applied for estimating fractional abundance of vegetation and bare soil. To account for the small scale heterogeneity of the alpine landscape very high resolved multispectral QuickBird imagery is used. The performance of LSU and MTMF for estimating percent vegetation cover is good (r²=0.85, r²=0.71 respectively). A poorer performance is achieved for bare soil (r²=0.28, r²=0.39 respectively) because compared to vegetation, bare soil has a less characteristic spectral signature in the wavelength domain detected by the QuickBird sensor. Apart from monitoring erosion controlling factors, quantification of soil erosion by applying soil erosion risk models is done. The performance of the two established models Universal Soil Loss Equation (USLE) and Pan-European Soil Erosion Risk Assessment (PESERA) for their suitability to model erosion for mountain environments is tested. Cs-137 is used to verify the resulting erosion rates from USLE and PESERA. PESERA yields no correlation to measured Cs-137 long term erosion rates and shows lower sensitivity to FVC. Thus, USLE is used to model the entire study site. The LSU-derived FVC map is used to adapt the C factor of the USLE. Compared to the low erosion rates computed with the former available low resolution dataset (1:25000) the satellite supported USLE map shows “hotspots” of soil erosion of up to 16 t ha-1 a-1. In general, Cs-137 in combination with the USLE is a very suitable method to assess soil erosion for larger areas, as both give estimates on long-term soil erosion. Especially for inaccessible alpine areas, GIS and remote sensing proved to be powerful tools that can be used for repetitive measurements of erosion features and causal factors. In times of global change it is of crucial importance to account for temporal developments. However, the evaluation of the applied soil erosion risk models revealed that the implementation of temporal aspects, such as varying climate, land use and vegetation cover is still insufficient. Thus, the proposed validation strategies (spatial, temporal and via Cs-137) are essential. Further case studies in alpine regions are needed to test the methods elaborated for the Urseren Valley. However, the presented approaches are promising with respect to improve the monitoring and identification of soil erosion risk areas in alpine regions

    Land-Surface Parameters for Spatial Predictive Mapping and Modeling

    Get PDF
    Land-surface parameters derived from digital land surface models (DLSMs) (for example, slope, surface curvature, topographic position, topographic roughness, aspect, heat load index, and topographic moisture index) can serve as key predictor variables in a wide variety of mapping and modeling tasks relating to geomorphic processes, landform delineation, ecological and habitat characterization, and geohazard, soil, wetland, and general thematic mapping and modeling. However, selecting features from the large number of potential derivatives that may be predictive for a specific feature or process can be complicated, and existing literature may offer contradictory or incomplete guidance. The availability of multiple data sources and the need to define moving window shapes, sizes, and cell weightings further complicate selecting and optimizing the feature space. This review focuses on the calculation and use of DLSM parameters for empirical spatial predictive modeling applications, which rely on training data and explanatory variables to make predictions of landscape features and processes over a defined geographic extent. The target audience for this review is researchers and analysts undertaking predictive modeling tasks that make use of the most widely used terrain variables. To outline best practices and highlight future research needs, we review a range of land-surface parameters relating to steepness, local relief, rugosity, slope orientation, solar insolation, and moisture and characterize their relationship to geomorphic processes. We then discuss important considerations when selecting such parameters for predictive mapping and modeling tasks to assist analysts in answering two critical questions: What landscape conditions or processes does a given measure characterize? How might a particular metric relate to the phenomenon or features being mapped, modeled, or studied? We recommend the use of landscape- and problem-specific pilot studies to answer, to the extent possible, these questions for potential features of interest in a mapping or modeling task. We describe existing techniques to reduce the size of the feature space using feature selection and feature reduction methods, assess the importance or contribution of specific metrics, and parameterize moving windows or characterize the landscape at varying scales using alternative methods while highlighting strengths, drawbacks, and knowledge gaps for specific techniques. Recent developments, such as explainable machine learning and convolutional neural network (CNN)-based deep learning, may guide and/or minimize the need for feature space engineering and ease the use of DLSMs in predictive modeling tasks

    Triennial Report: 2009-2011

    Get PDF
    Triennial Report Purpose [Page] 3 Geographical Information Science Center of Excellence [Page] 4 SDSU Faculty [Page] 6 EROS Faculty [Page] 13 Research Professors [Page] 18 Postdoctoral Fellows [Page] 21 GSE Ph.D Program [Page] 30 Ph.D. Students [Page] 31 Ph.D. Fellowships [Page] 44 Recent Ph.D. Graduates [Page] 45 Center Scholars Program and Masters Students [Page] 51 Research Staff [Page] 52 Administrative and Information Technology Staff [Page] 55 Computer Resources [Page] 58 Research Funding [Page] 60 Looking Forward [Page] 61 Appendix I Alumni Faculty and Staff Appendix II Cool Faculty Research and Locations Appendix III Non-Academic Fun Things To Do Appendix IV Publications 2009-2011 Appendix V Directory Appendix VI GIScCE Birthplace Map Appendix VII How To Get To The GIScC
    corecore