1,804 research outputs found

    Quantifying Seagrass Distribution in Coastal Water With Deep Learning Models

    Get PDF
    Coastal ecosystems are critically affected by seagrass, both economically and ecologically. However, reliable seagrass distribution information is lacking in nearly all parts of the world because of the excessive costs associated with its assessment. In this paper, we develop two deep learning models for automatic seagrass distribution quantification based on 8-band satellite imagery. Specifically, we implemented a deep capsule network (DCN) and a deep convolutional neural network (CNN) to assess seagrass distribution through regression. The DCN model first determines whether seagrass is presented in the image through classification. Second, if seagrass is presented in the image, it quantifies the seagrass through regression. During training, the regression and classification modules are jointly optimized to achieve end-to-end learning. The CNN model is strictly trained for regression in seagrass and non-seagrass patches. In addition, we propose a transfer learning approach to transfer knowledge in the trained deep models at one location to perform seagrass quantification at a different location. We evaluate the proposed methods in three WorldView-2 satellite images taken from the coastal area in Florida. Experimental results show that the proposed deep DCN and CNN models performed similarly and achieved much better results than a linear regression model and a support vector machine. We also demonstrate that using transfer learning techniques for the quantification of seagrass significantly improved the results as compared to directly applying the deep models to new locations

    Modelling the environmental drivers and abundance of seagrass communities in Cleveland Bay

    Get PDF
    The purpose of the study was to provide information on factors influencing the choice of an academic major and demographic characteristics of students enrolled in baccalaureate degree programs administered by home economics units in the California State University system. Specific objectives of the study were: (1) to analyze the relative importance of reasons which influence students\u27 choice of an area of study or major and the sources of information used in the decision process and (2) to compare the students\u27 responses on the basis of area of study, gender, age, ethnicity, enrollment status, and marital status. The majority of the students were single, White, females between the ages of 18 and 24. Approximately 80 percent of the respondents represented three of seven areas of study: food and nutrition, interior design, and textiles/clothing/merchandising. Two-thirds of the students had changed their majors one or more times. The most frequently cited last major was business. Respondents rated the reasons for choosing an area of study moderate to extremely high in importance; ratings assigned to the information sources were extremely low importance to moderate importance. Statistically significant differences in the mean importance scores were found for students grouped by ethnicity and area of study. However, there was no relationship between the means and the background variables age, marital status, and enrollment status. Students are influenced by a variety of factors when choosing an academic program. More emphasis is placed on personal reasons including interest in the program and personal skills and career-related factors, including preparation for a career and job opportunities, than factors identified as service and experiential. The college catalog is the most important source of information. In general, people are of greater importance as information sources than media items. Recommendations for recruitment strategies include: develop on- and off-campus programs designed to stimulate interest in the home economics areas of study, implement a career development plan, coordinate the academic unit\u27s recruitment plan with the university plan, and intensify public relations activities directed towards the university, public, and professional communities. (Abstract shortened with permission of author.

    Semi-Supervised Adversarial Domain Adaptation for Seagrass Detection Using Multispectral Images in Coastal Areas

    Get PDF
    Seagrass form the basis for critically important marine ecosystems. Previously, we implemented a deep convolutional neural network (CNN) model to detect seagrass in multispectral satellite images of three coastal habitats in northern Florida. However, a deep CNN model trained at one location usually does not generalize to other locations due to data distribution shifts. In this paper, we developed a semi-supervised domain adaptation method to generalize a trained deep CNN model to other locations for seagrass detection. First, we utilized a generative adversarial network loss to align marginal data distribution between source domain and target domain using unlabeled data from both data domains. Second, we used a few labelled samples from the target domain to align class specific data distributions between the two domains, based on the contrastive semantic alignment loss. We achieved the best results in 28 out of 36 scenarios as compared to other state-of-the-art domain adaptation methods

    Remote sensing for cost-effective blue carbon accounting

    Get PDF
    Blue carbon ecosystems (BCE) include mangrove forests, tidal marshes, and seagrass meadows, all of which are currently under threat, putting their contribution to mitigating climate change at risk. Although certain challenges and trade-offs exist, remote sensing offers a promising avenue for transparent, replicable, and cost-effective accounting of many BCE at unprecedented temporal and spatial scales. The United Nations Framework Convention on Climate Change (UNFCCC) has issued guidelines for developing blue carbon inventories to incorporate into Nationally Determined Contributions (NDCs). Yet, there is little guidance on remote sensing techniques for monitoring, reporting, and verifying blue carbon assets. This review constructs a unified roadmap for applying remote sensing technologies to develop cost-effective carbon inventories for BCE – from local to global scales. We summarise and discuss (1) current standard guidelines for blue carbon inventories; (2) traditional and cutting-edge remote sensing technologies for mapping blue carbon habitats; (3) methods for translating habitat maps into carbon estimates; and (4) a decision tree to assist users in determining the most suitable approach depending on their areas of interest, budget, and required accuracy of blue carbon assessment. We designed this work to support UNFCCC-approved IPCC guidelines with specific recommendations on remote sensing techniques for GHG inventories. Overall, remote sensing technologies are robust and cost-effective tools for monitoring, reporting, and verifying blue carbon assets and projects. Increased appreciation of these techniques can promote a technological shift towards greater policy and industry uptake, enhancing the scalability of blue carbon as a Natural Climate Solution worldwide

    A review of carbon monitoring in wet carbon systems using remote sensing

    Get PDF
    Carbon monitoring is critical for the reporting and verification of carbon stocks and change. Remote sensing is a tool increasingly used to estimate the spatial heterogeneity, extent and change of carbon stocks within and across various systems. We designate the use of the term wet carbon system to the interconnected wetlands, ocean, river and streams, lakes and ponds, and permafrost, which are carbon-dense and vital conduits for carbon throughout the terrestrial and aquatic sections of the carbon cycle. We reviewed wet carbon monitoring studies that utilize earth observation to improve our knowledge of data gaps, methods, and future research recommendations. To achieve this, we conducted a systematic review collecting 1622 references and screening them with a combination of text matching and a panel of three experts. The search found 496 references, with an additional 78 references added by experts. Our study found considerable variability of the utilization of remote sensing and global wet carbon monitoring progress across the nine systems analyzed. The review highlighted that remote sensing is routinely used to globally map carbon in mangroves and oceans, whereas seagrass, terrestrial wetlands, tidal marshes, rivers, and permafrost would benefit from more accurate and comprehensive global maps of extent. We identified three critical gaps and twelve recommendations to continue progressing wet carbon systems and increase cross system scientific inquiry

    Improving accuracy and efficiency in seagrass detection using state-of-the-art AI techniques

    Get PDF
    Seagrasses provide a wide range of ecosystem services in coastal marine environments. Despite their ecological and economic importance, these species are declining because of human impact. This decline has driven the need for monitoring and mapping to estimate the overall health and dynamics of seagrasses in coastal environments, often based on underwater images. However, seagrass detection from underwater digital images is not a trivial task; it requires taxonomic expertise and is time-consuming and expensive. Recently automatic approaches based on deep learning have revolutionised object detection performance in many computer vision applications, and there has been interest in applying this to automated seagrass detection from imagery. Deep learning–based techniques reduce the need for hardcore feature extraction by domain experts which is required in machine learning-based techniques. This study presents a YOLOv5-based one-stage detector and an EfficientDetD7–based two-stage detector for detecting seagrass, in this case, Halophila ovalis, one of the most widely distributed seagrass species. The EfficientDet-D7–based seagrass detector achieves the highest mAP of 0.484 on the ECUHO-2 dataset and mAP of 0.354 on the ECUHO-1 dataset, which are about 7% and 5% better than the state-of-the-art Halophila ovalis detection performance on those datasets, respectively. The proposed YOLOv5-based detector achieves an average inference time of 0.077 s and 0.043 s respectively which are much lower than the state-of-the-art approach on the same datasets

    Toward a Coordinated Global Observing System for Seagrasses and Marine Macroalgae

    Get PDF
    In coastal waters around the world, the dominant primary producers are benthic macrophytes, including seagrasses and macroalgae, that provide habitat structure and food for diverse and abundant biological communities and drive ecosystem processes. Seagrass meadows and macroalgal forests play key roles for coastal societies, contributing to fishery yields, storm protection, biogeochemical cycling and storage, and important cultural values. These socio-economically valuable services are threatened worldwide by human activities, with substantial areas of seagrass and macroalgal forests lost over the last half-century. Tracking the status and trends in marine macrophyte cover and quality is an emerging priority for ocean and coastal management, but doing so has been challenged by limited coordination across the numerous efforts to monitor macrophytes, which vary widely in goals, methodologies, scales, capacity, governance approaches, and data availability. Here, we present a consensus assessment and recommendations on the current state of and opportunities for advancing global marine macrophyte observations, integrating contributions from a community of researchers with broad geographic and disciplinary expertise. With the increasing scale of human impacts, the time is ripe to harmonize marine macrophyte observations by building on existing networks and identifying a core set of common metrics and approaches in sampling design, field measurements, governance, capacity building, and data management. We recommend a tiered observation system, with improvement of remote sensing and remote underwater imaging to expand capacity to capture broad-scale extent at intervals of several years, coordinated with stratified in situ sampling annually to characterize the key variables of cover and taxonomic or functional group composition, and to provide ground-truth. A robust networked system of macrophyte observations will be facilitated by establishing best practices, including standard protocols, documentation, and sharing of resources at all stages of workflow, and secure archiving of open-access data. Because such a network is necessarily distributed, sustaining it depends on close engagement of local stakeholders and focusing on building and long-term maintenance of local capacity, particularly in the developing world. Realizing these recommendations will produce more effective, efficient, and responsive observing, a more accurate global picture of change in vegetated coastal systems, and stronger international capacity for sustaining observations
    • …
    corecore