1,008 research outputs found

    Disability in multiple sclerosis:Improving clinical assessment

    Get PDF
    he findings of this thesis contribute to the resolution of these clinical challenges, specifically: • Clinical assessment of disability can be improved when (i) UEF and ambu- lation are assessed independently (chapter 3), (ii) tasks of ADL are used in conjunction to other measures (chapter 4), and (iii) a value for MCID of improvement for AMSQ is determined (chapter 5) • Multimodal assessment of UEF and mobility, and subgroup analyses im- prove evaluation of treatment effects (chapter 6) • Reference videos reduce the variability of motor functioning assessment (chapter 7) • Detection of change in UEF and mobility can be improved when video-as- sisted composite measures are used in conjunction with conventional measures (chapter 8) • Autoencoders are a valuable method to preserve data privacy in analyses of patient videos (chapter 9). Final conclusion The clinical assessment of MS patients is an exciting field grounded on illustrious historical foundations and deepened through contemporary technological innovation. Further improvement and integration into multidisciplinary data infrastructures will eventually lead to a better understanding and control of MS, which ultimately improves the quality of the life of our patients

    Human Gait Analysis using Spatiotemporal Data Obtained from Gait Videos

    Get PDF
    Mit der Entwicklung von Deep-Learning-Techniken sind Deep-acNN-basierte Methoden zum Standard für Bildverarbeitungsaufgaben geworden, wie z. B. die Verfolgung menschlicher Bewegungen und Posenschätzung, die Erkennung menschlicher Aktivitäten und die Erkennung von Gesichtern. Deep-Learning-Techniken haben den Entwurf, die Implementierung und den Einsatz komplexer und vielfältiger Anwendungen verbessert, die nun in einer Vielzahl von Bereichen, einschließlich der Biomedizintechnik, eingesetzt werden. Die Anwendung von Computer-Vision-Techniken auf die medizinische Bild- und Videoanalyse hat zu bemerkenswerten Ergebnissen bei der Erkennung von Ereignissen geführt. Die eingebaute Fähigkeit von convolutional neural network (CNN), Merkmale aus komplexen medizinischen Bildern zu extrahieren, hat in Verbindung mit der Fähigkeit von long short term memory network (LSTM), die zeitlichen Informationen zwischen Ereignissen zu erhalten, viele neue Horizonte für die medizinische Forschung geschaffen. Der Gang ist einer der kritischen physiologischen Bereiche, der viele Störungen im Zusammenhang mit Alterung und Neurodegeneration widerspiegeln kann. Eine umfassende und genaue Ganganalyse kann Einblicke in die physiologischen Bedingungen des Menschen geben. Bestehende Ganganalyseverfahren erfordern eine spezielle Umgebung, komplexe medizinische Geräte und geschultes Personal für die Erfassung der Gangdaten. Im Falle von tragbaren Systemen kann ein solches System die kognitiven Fähigkeiten beeinträchtigen und für die Patienten unangenehm sein. Außerdem wurde berichtet, dass die Patienten in der Regel versuchen, während des Labortests bessere Leistungen zu erbringen, was möglicherweise nicht ihrem tatsächlichen Gang entspricht. Trotz technologischer Fortschritte stoßen wir bei der Messung des menschlichen Gehens in klinischen und Laborumgebungen nach wie vor an Grenzen. Der Einsatz aktueller Ganganalyseverfahren ist nach wie vor teuer und zeitaufwändig und erschwert den Zugang zu Spezialgeräten und Fachwissen. Daher ist es zwingend erforderlich, über Methoden zu verfügen, die langfristige Daten über den Gesundheitszustand des Patienten liefern, ohne doppelte kognitive Aufgaben oder Unannehmlichkeiten bei der Verwendung tragbarer Sensoren. In dieser Arbeit wird daher eine einfache, leicht zu implementierende und kostengünstige Methode zur Erfassung von Gangdaten vorgeschlagen. Diese Methode basiert auf der Aufnahme von Gehvideos mit einer Smartphone-Kamera in einer häuslichen Umgebung unter freien Bedingungen. Deep neural network (NN) verarbeitet dann diese Videos, um die Gangereignisse zu extrahieren. Die erkannten Ereignisse werden dann weiter verwendet, um verschiedene räumlich-zeitliche Parameter des Gangs zu quantifizieren, die für jedes Ganganalysesystem wichtig sind. In dieser Arbeit wurden Gangvideos verwendet, die mit einer Smartphone-Kamera mit geringer Auflösung außerhalb der Laborumgebung aufgenommen wurden. Viele Deep- Learning-basierte NNs wurden implementiert, um die grundlegenden Gangereignisse wie die Fußposition in Bezug auf den Boden aus diesen Videos zu erkennen. In der ersten Studie wurde die Architektur von AlexNet verwendet, um das Modell anhand von Gehvideos und öffentlich verfügbaren Datensätzen von Grund auf zu trainieren. Mit diesem Modell wurde eine Gesamtgenauigkeit von 74% erreicht. Im nächsten Schritt wurde jedoch die LSTM-Schicht in dieselbe Architektur integriert. Die eingebaute Fähigkeit von LSTM in Bezug auf die zeitliche Information führte zu einer verbesserten Vorhersage der Etiketten für die Fußposition, und es wurde eine Genauigkeit von 91% erreicht. Allerdings gibt es Schwierigkeiten bei der Vorhersage der richtigen Bezeichnungen in der letzten Phase des Schwungs und der Standphase jedes Fußes. Im nächsten Schritt wird das Transfer-Lernen eingesetzt, um die Vorteile von bereits trainierten tiefen NNs zu nutzen, indem vortrainierte Gewichte verwendet werden. Zwei bekannte Modelle, inceptionresnetv2 (IRNV-2) und densenet201 (DN-201), wurden mit ihren gelernten Gewichten für das erneute Training des NN auf neuen Daten verwendet. Das auf Transfer-Lernen basierende vortrainierte NN verbesserte die Vorhersage von Kennzeichnungen für verschiedene Fußpositionen. Es reduzierte insbesondere die Schwankungen in den Vorhersagen in der letzten Phase des Gangschwungs und der Standphase. Bei der Vorhersage der Klassenbezeichnungen der Testdaten wurde eine Genauigkeit von 94% erreicht. Da die Abweichung bei der Vorhersage des wahren Labels hauptsächlich ein Bild betrug, konnte sie bei einer Bildrate von 30 Bildern pro Sekunde ignoriert werden. Die vorhergesagten Markierungen wurden verwendet, um verschiedene räumlich-zeitliche Parameter des Gangs zu extrahieren, die für jedes Ganganalysesystem entscheidend sind. Insgesamt wurden 12 Gangparameter quantifiziert und mit der durch Beobachtungsmethoden gewonnenen Grundwahrheit verglichen. Die NN-basierten räumlich-zeitlichen Parameter zeigten eine hohe Korrelation mit der Grundwahrheit, und in einigen Fällen wurde eine sehr hohe Korrelation erzielt. Die Ergebnisse belegen die Nützlichkeit der vorgeschlagenen Methode. DerWert des Parameters über die Zeit ergab eine Zeitreihe, eine langfristige Darstellung des Ganges. Diese Zeitreihe konnte mit verschiedenen mathematischen Methoden weiter analysiert werden. Als dritter Beitrag in dieser Dissertation wurden Verbesserungen an den bestehenden mathematischen Methoden der Zeitreihenanalyse von zeitlichen Gangdaten vorgeschlagen. Zu diesem Zweck werden zwei Verfeinerungen bestehender entropiebasierter Methoden zur Analyse von Schrittintervall-Zeitreihen vorgeschlagen. Diese Verfeinerungen wurden an Schrittintervall-Zeitseriendaten von normalen und neurodegenerativen Erkrankungen validiert, die aus der öffentlich zugänglichen Datenbank PhysioNet heruntergeladen wurden. Die Ergebnisse zeigten, dass die von uns vorgeschlagene Methode eine klare Trennung zwischen gesunden und kranken Gruppen ermöglicht. In Zukunft könnten fortschrittliche medizinische Unterstützungssysteme, die künstliche Intelligenz nutzen und von den hier vorgestellten Methoden abgeleitet sind, Ärzte bei der Diagnose und langfristigen Überwachung des Gangs von Patienten unterstützen und so die klinische Arbeitsbelastung verringern und die Patientensicherheit verbessern

    Using perceptive computing in multiple sclerosis - the Short Maximum Speed Walk test

    Get PDF
    BACKGROUND: We investigated the applicability and feasibility of perceptive computing assisted gait analysis in multiple sclerosis (MS) patients using Microsoft Kinect. To detect the maximum walking speed and the degree of spatial sway, we established a computerized and observer-independent measure, which we named Short Maximum Speed Walk (SMSW), and compared it to established clinical measures of gait disability in MS, namely the Expanded Disability Status Scale (EDSS) and the Timed 25-Foot Walk (T25FW). METHODS: Cross-sectional study of 22 MS patients (age mean +/- SD 43 +/- 9 years, 13 female) and 22 age and gender matched healthy control subjects (HC) (age 37 +/- 11 years, 13 female). The disability level of each MS patient was graded using the EDSS (median 3.0, range 0.0-6.0). All subjects then performed the SMSW and the Timed 25-Foot Walk (T25FW). The SMSW comprised five gait parameters, which together assessed average walking speed and gait stability in different dimensions (left/right, up/down and 3D deviation). RESULTS: SMSW average walking speed was slower in MS patients (1.6 +/- 0.3 m/sec) than in HC (1.8 +/- 0.4 m/sec) (p = 0.005) and correlated well with EDSS (Spearman's Rho 0.676, p < 0.001). Furthermore, SMSW revealed higher left/right deviation in MS patients compared to HC. SMSW showed high recognition quality and retest-reliability (covariance 0.13 m/sec, ICC 0.965, p < 0.001). There was a significant correlation between SMSW average walking speed and T25FW (Pearson's R = -0.447, p = 0.042). CONCLUSION: Our data suggest that ambulation tests using Microsoft Kinect are feasible, well tolerated and can detect clinical gait disturbances in patients with MS. The retest-reliability was on par with the T25FW

    Healthcare applications of single camera markerless motion capture: a scoping review

    Get PDF
    Funding This work was funded by a University of Aberdeen Elphinstone PhD scholarship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Enhancing the measurement of clinical outcomes using Microsoft Kinect

    Get PDF
    There is a growing body of applications leveraging Microsoft Kinect and the associated Windows Software Development Kit in health and wellness. In particular, this platform has been valuable in developing interactive solutions for rehabilitation including creating more engaging exercise regimens and ensuring that exercises are performed correctly for optimal outcomes. Clinical trials rely upon robust and validated methodologies to measure health status and to detect treatment-related changes over time to enable the efficacy and safety of new drug treatments to be assessed and measured. In many therapeutic areas, traditional outcome measures rely on subjective investigator and patient ratings. Subjective ratings are not always sensitive to detecting small improvements, are subject to inter- and intra-rater variability and limited in their ability to record detailed or subtle aspects of movement and mobility. For these reasons, objective measurements may provide greater sensitivity to detect treatment-related changes where they exist. In this review paper, we explore the use of the Kinect platform to develop low-cost approaches to objectively measure aspects of movement. We consider published applications that measure aspects of gait and balance, upper extremity movement, chest wall motion and facial analysis. In each case, we explore the utility of the approach for clinical trials, and the precision and accuracy of estimates derived from the Kinect output. We conclude that the use of games platforms such as Microsoft Kinect to measure clinical outcomes offer a versatile, easy to use and low-cost approach that may add significant value and utility to clinical drug development, in particular in replacing conventional subjective measures and providing richer information about movement than previously possible in large scale clinical trials, especially in the measurement of gross spatial movements. Regulatory acceptance of clinical outcomes collected in this way will be subject to comprehensive assessment of validity and clinical relevance, and this will require good quality peer-reviewed publications of scientific evidence

    Low-Cost Objective Measurement of Prehension Skills

    Get PDF
    This thesis aims to explore the feasibility of using low-cost, portable motion capture tools for the quantitative assessment of sequential 'reach-to-grasp' and repetitive 'finger-tapping' movements in neurologically intact and deficit populations, both in clinical and non-clinical settings. The research extends the capabilities of an existing optoelectronic postural sway assessment tool (PSAT) into a more general Boxed Infrared Gross Kinematic Assessment Tool (BIGKAT) to evaluate prehensile control of hand movements outside the laboratory environment. The contributions of this work include the validation of BIGKAT against a high-end motion capture system (Optotrak) for accuracy and precision in tracking kinematic data. BIGKAT was subsequently applied to kinematically resolve prehensile movements, where concurrent recordings with Optotrak demonstrate similar statistically significant results for five kinematic measures, two spatial measures (Maximum Grip Aperture – MGA, Peak Velocity – PV) and three temporal measures (Movement Time – MT, Time to MGA – TMGA, Time to PV – TPV). Regression analysis further establishes a strong relationship between BIGKAT and Optotrak, with nearly unity slope and low y-intercept values. Results showed reliable performance of BIGKAT and its ability to produce similar statistically significant results as Optotrak. BIGKAT was also applied to quantitatively assess bradykinesia in Parkinson's patients during finger-tapping movements. The system demonstrated significant differences between PD patients and healthy controls in key kinematic measures, paving the way for potential clinical applications. The study characterized kinematic differences in prehensile control in different sensory environments using a Virtual Reality head mounted display and finger tracking system (the Leap Motion), emphasizing the importance of sensory information during hand movements. This highlighted the role of hand vision and haptic feedback during initial and final phases of prehensile movement trajectory. The research also explored marker-less pose estimation using deep learning tools, specifically DeepLabCut (DLC), for reach-to-grasp tracking. Despite challenges posed by COVID-19 limitations on data collection, the study showed promise in scaling reaching and grasping components but highlighted the need for diverse datasets to resolve kinematic differences accurately. To facilitate the assessment of prehension activities, an Event Detection Tool (EDT) was developed, providing temporal measures for reaction time, reaching time, transport time, and movement time during object grasping and manipulation. Though initial pilot data was limited, the EDT holds potential for insights into disease progression and movement disorder severity. Overall, this work contributes to the advancement of low-cost, portable solutions for quantitatively assessing upper-limb movements, demonstrating the potential for wider clinical use and guiding future research in the field of human movement analysis

    Non-contact measures to monitor hand movement of people with rheumatoid arthritis using a monocular RGB camera

    Get PDF
    Hand movements play an essential role in a person’s ability to interact with the environment. In hand biomechanics, the range of joint motion is a crucial metric to quantify changes due to degenerative pathologies, such as rheumatoid arthritis (RA). RA is a chronic condition where the immune system mistakenly attacks the joints, particularly those in the hands. Optoelectronic motion capture systems are gold-standard tools to quantify changes but are challenging to adopt outside laboratory settings. Deep learning executed on standard video data can capture RA participants in their natural environments, potentially supporting objectivity in remote consultation. The three main research aims in this thesis were 1) to assess the extent to which current deep learning architectures, which have been validated for quantifying motion of other body segments, can be applied to hand kinematics using monocular RGB cameras, 2) to localise where in videos the hand motions of interest are to be found, 3) to assess the validity of 1) and 2) to determine disease status in RA. First, hand kinematics for twelve healthy participants, captured with OpenPose were benchmarked against those captured using an optoelectronic system, showing acceptable instrument errors below 10°. Then, a gesture classifier was tested to segment video recordings of twenty-two healthy participants, achieving an accuracy of 93.5%. Finally, OpenPose and the classifier were applied to videos of RA participants performing hand exercises to determine disease status. The inferred disease activity exhibited agreement with the in-person ground truth in nine out of ten instances, outperforming virtual consultations, which agreed only six times out of ten. These results demonstrate that this approach is more effective than estimated disease activity performed by human experts during video consultations. The end goal sets the foundation for a tool that RA participants can use to observe their disease activity from their home.Open Acces
    • …
    corecore