236 research outputs found

    Quantifying Performance of Bipedal Standing with Multi-channel EMG

    Full text link
    Spinal cord stimulation has enabled humans with motor complete spinal cord injury (SCI) to independently stand and recover some lost autonomic function. Quantifying the quality of bipedal standing under spinal stimulation is important for spinal rehabilitation therapies and for new strategies that seek to combine spinal stimulation and rehabilitative robots (such as exoskeletons) in real time feedback. To study the potential for automated electromyography (EMG) analysis in SCI, we evaluated the standing quality of paralyzed patients undergoing electrical spinal cord stimulation using both video and multi-channel surface EMG recordings during spinal stimulation therapy sessions. The quality of standing under different stimulation settings was quantified manually by experienced clinicians. By correlating features of the recorded EMG activity with the expert evaluations, we show that multi-channel EMG recording can provide accurate, fast, and robust estimation for the quality of bipedal standing in spinally stimulated SCI patients. Moreover, our analysis shows that the total number of EMG channels needed to effectively predict standing quality can be reduced while maintaining high estimation accuracy, which provides more flexibility for rehabilitation robotic systems to incorporate EMG recordings

    Non-Invasive Investigation of Human Foot Muscles Function

    Get PDF
    Appropriate functioning of the human foot is fundamental for good quality of life. The intrinsic foot muscles (IFM) are a crucial component of the foot, but their natural behaviour and contribution to good foot health is currently poorly understood. Recording muscle activation from IFM has been attempted with invasive techniques, but these generally only allow assessment of one muscle at a time and are not much used in many clinical populations (e.g. children, patients with peripheral neuropathy or on blood thinning medication). Here a novel application of multi-channel surface electromyography (sEMG) electrodes is presented to non-invasively, record sEMG and quantify activation patterns of IFMs from across the plantar region of the foot. sEMG (13Ă—5 array), kinematics and force plate data were recorded from 30 healthy adult volunteers who completed six postural balance tasks (e.g. bipedal stance, one-foot stance, two-foot tip-toe). Linear (amplitude based) and non-linear (entropy based) methodologies were used to evaluate the physiological features of the sEMG, the patterns of activation, the association with whole body and foot biomechanics and the neuromuscular drive to the IFM. EMG signals features (amplitude and frequency) were shown to be in the physiological ranges reported in the literature (Basmajian and De Luca, 1985), with spatially clustered patterns of high activation corresponding to the Flexor digitorum brevis muscle. IFMs responded differently based on the direction of postural sway, with greater activations associated with sways in the mediolateral direction. Entropy based, non-linear analysis revealed that neuromuscular drive to IFM depends on the balance demand of the postural task, with greater drive evident for more challenging tasks (i.e. standing on tiptoe). Combining non-invasive measures of IFM activation and entropy based assessment of temporal organisation (or structure) of EMG signal variability is therefore revealing of IFM function and will enable a more detailed assessment of IFM function across healthy and clinical populations

    Online Learning for the Control of Human Standing via Spinal Cord Stimulation

    Get PDF
    Many applications in recommender systems or experimental design need to make decisions online. Each decision leads to a stochastic reward with initially unknown distribution, while new decisions are made based on the observations of previous rewards. To maximize the total reward, one needs to balance between exploring different strategies and exploiting currently optimal strategies within a given set of strategies. This is the underlying trade-off of a number of clinical neural engineering problems, including brain-computer interface, deep brain stimulation, and spinal cord injury therapy. In these systems, complex electronic and computational systems interact with the human central nervous system. A critical issue is how to control the agents to produce results which are optimal under some measure, for example, efficiently decoding the user's intention in a brain-computer interface or performs temporal and spatial specific stimulation in deep brain stimulation. This dissertation is motivated by electrical sipnal cord stimulation with high dimensional inputs(multi-electrode arrays). The stimulation is applied to promote the function and rehabilitation of the remaining neural circuitry below the spinal cord injury, and enable complex motor behaviors such as stepping and standing. To enable the careful tuning of these stimuli for each patient, the electrode arrays which deliver these stimuli have become increasingly more sophisticated, with a corresponding increase in the number of free parameters over which the stimuli need to be optimized. Since the number of stimuli is growing exponentially with the number of electrodes, algorithmic methods of selecting stimuli is necessary, particularly when the feedback is expensive to get. In many online learning settings, particularly those that involve human feedback, reliable feedback is often limited to pairwise preferences instead of real valued feedback. Examples include implicit or subjective feedback for information retrieval and recommender systems, such as clicks on search results, and subjective feedback on the quality of recommended care. Sometimes with real valued feedback, we require that the sampled function values exceed some prespecified ``safety'' threshold, a requirement that existing algorithms fail to meet. Examples include medical applications where the patients' comfort must be guaranteed; recommender systems aiming to avoid user dissatisfaction; and robotic control, where one seeks to avoid controls that cause physical harm to the platform. This dissertation provides online learning algorithms for several specific online decision-making problems. \selfsparring optimizes the cumulative reward with relative feedback. RankComparison deals with ranking feedback. \safeopt considers the optimization with real valued feedback and safety constraints. \cduel is designed for specific spinal cord injury therapy. A variant of \cduel was implemented in closed-loop human experiments, controlling which epidural stimulating electrodes are used in the spinal cord of SCI patients. The results obtained are compared with concurrent stimulus tuning carried out by human experimenter. These experiments show that this algorithm is at least as effective as the human experimenter, suggesting that this algorithm can be applied to the more challenging problems of enabling and optimizing complex, sensory-dependent behaviors, such as stepping and standing in SCI patients. In order to get reliable quantitative measurements besides comparisons, the standing behaviors of paralyzed patients under spinal cord stimulation are evaluated. The potential of quantifying the quality of bipedal standing in an automatic approach is also shown in this work.</p

    EMG-driven control in lower limb prostheses: a topic-based systematic review

    Get PDF
    Background The inability of users to directly and intuitively control their state-of-the-art commercial prosthesis contributes to a low device acceptance rate. Since Electromyography (EMG)-based control has the potential to address those inabilities, research has flourished on investigating its incorporation in microprocessor-controlled lower limb prostheses (MLLPs). However, despite the proposed benefits of doing so, there is no clear explanation regarding the absence of a commercial product, in contrast to their upper limb counterparts. Objective and methodologies This manuscript aims to provide a comparative overview of EMG-driven control methods for MLLPs, to identify their prospects and limitations, and to formulate suggestions on future research and development. This is done by systematically reviewing academical studies on EMG MLLPs. In particular, this review is structured by considering four major topics: (1) type of neuro-control, which discusses methods that allow the nervous system to control prosthetic devices through the muscles; (2) type of EMG-driven controllers, which defines the different classes of EMG controllers proposed in the literature; (3) type of neural input and processing, which describes how EMG-driven controllers are implemented; (4) type of performance assessment, which reports the performance of the current state of the art controllers. Results and conclusions The obtained results show that the lack of quantitative and standardized measures hinders the possibility to analytically compare the performances of different EMG-driven controllers. In relation to this issue, the real efficacy of EMG-driven controllers for MLLPs have yet to be validated. Nevertheless, in anticipation of the development of a standardized approach for validating EMG MLLPs, the literature suggests that combining multiple neuro-controller types has the potential to develop a more seamless and reliable EMG-driven control. This solution has the promise to retain the high performance of the currently employed non-EMG-driven controllers for rhythmic activities such as walking, whilst improving the performance of volitional activities such as task switching or non-repetitive movements. Although EMG-driven controllers suffer from many drawbacks, such as high sensitivity to noise, recent progress in invasive neural interfaces for prosthetic control (bionics) will allow to build a more reliable connection between the user and the MLLPs. Therefore, advancements in powered MLLPs with integrated EMG-driven control have the potential to strongly reduce the effects of psychosomatic conditions and musculoskeletal degenerative pathologies that are currently affecting lower limb amputees

    Neuroprosthetic rehabilitation and translational mechanism after severe spinal cord injury

    Get PDF
    Traumatic SCIs have long-term health, economic and social consequences, stressing the urgency to develop interventions to improve recovery after such injuries. Today, the only proven effective interventions to enhance recovery after SCI are activity-based rehabilitation therapies, such as locomotor training. However, locomotor training shows no or very limited efficacy to improve function after a severe SCI that induces paralysis of the limbs. To mimic the outcome of severe but incomplete SCI in rodents, we developed a model of double opposite-side lateral hemisections termed staggered hemisection in adult rats. This model induced permanent paralysis below the level of injury but leaves an intervening gap of intact neural tissue that provides a substrate for recovery. We showed that this SCI leads to degradation of motor functions, which correlates with the formation of aberrant neuronal connections below the lesion. Robotic devices with a rehabilitative purpose should act as propulsive or postural neuroprosthesis allowing training under natural conditions. Our versatile robotic interface provides multidirectional bodyweight support during overground locomotion in rats. We next evaluated the effects of robot-assisted gait training enabled by electrochemical stimulation of spinal circuits to restore locomotion after staggered hemisection SCI. We found that after two months of daily training, paralyzed rats recovered the ability to initiate, sustain and adjust bipedal locomotion while supported in the robot under electrochemical stimulation. This recovery correlated with ubiquitous reorganization of corticospinal, brainstem, and intraspinal fibers. We next evaluated whether this treatment was capable of restoring supraspinal control of locomotion after a clinically relevant SCI. Rats received a severe contusion of the spinal cord that spared less than 10% of intact tissue. Robot-assisted rehabilitation restored weight-bearing locomotion in all the trained rats when stimulated electrochemicallay and in a subset of rats in the absence of any enabling factors which paralelled with the reorganization of axonal projections of reticulospinal fibers below the contusion. Virus-mediated silencing of reticulospinal neurons projecting to lumbar segments demonstrated that these inputs were necessary to initiate and sustain walking after training. When delaying the onset of training by two months, in the chronic stage, all the rats regained voluntary locomotor movements but the extent of the recovery was reduced compared to rats trained early after SCI. The results provide a strong rationale to evaluate the impact of neuroprosthetic training to improve motor functions in human patients with incomplete SCI. Translation of treatment paradigms developed in rodent models into effective clinical applications remains a major challenge in biomedical research. Here, we studied recovery of motor functions in more than 400 quadriplegic patients who presented various degree of spinal cord damage laterality. We found that recovery increases with the asymmetry of early motor deficits. We conclude that emergence of spinal cord decussating corticospinal fibers and bilateral motor cortex projections during mammalian evolution supports greater recovery after lateralized SCI primates compared to rodents. Novel experimental models and dedicated therapeutic strategies are necessary to take advantage of this powerful neuronal substrate for recovery after SCI

    Down-Conditioning of Soleus Reflex Activity using Mechanical Stimuli and EMG Biofeedback

    Get PDF
    Spasticity is a common syndrome caused by various brain and neural injuries, which can severely impair walking ability and functional independence. To improve functional independence, conditioning protocols are available aimed at reducing spasticity by facilitating spinal neuroplasticity. This down-conditioning can be performed using different types of stimuli, electrical or mechanical, and reflex activity measures, EMG or impedance, used as biofeedback variable. Still, current results on effectiveness of these conditioning protocols are incomplete, making comparisons difficult. We aimed to show the within-session task- dependent and across-session long-term adaptation of a conditioning protocol based on mechanical stimuli and EMG biofeedback. However, in contrast to literature, preliminary results show that subjects were unable to successfully obtain task-dependent modulation of their soleus short-latency stretch reflex magnitude

    Postural state modulation of cortical balance reactions

    Get PDF
    Safe and effective walking is a crucial part of daily human life, but the number of injuries and resulting financial burden from falls during walking is increasing. As a result, it continues to be important to advance understanding of dynamic balance control to improve approaches to rehabilitation and minimize fall risk. The control of stability during dynamic tasks poses a particularly complex challenge to the central nervous system (CNS) as the control of balance is performed under the changing mechanical, sensory and central states. Emerging work has a revealed the potential importance of cortical contributions to the control of stability particularly in response to moments of induced instability (perturbations). A cortically-evoked potential, the N1 response, is a discrete probe that is used to assess cortical contributions to stability and is most often used to study balance control in static contexts. Towards an understanding of dynamic balance control, it is necessary to study changes in the N1 during changes in movement isolated from other dynamic control processes. The influence of varying CNS state due to movement on cortical responses has not been evaluated. The current work assesses the response of N1 potentials during changes in pre-perturbation state evoked by different pre-perturbation leaning postures. This was used to manipulate the relative amplitude of perturbation by changing the starting position of the centre of mass (COM) with respect to the base of support. Higher threat conditions occurred when the perturbation led to movement of the COM towards the already loaded side (greater threat of instability) as compared to COM movement towards the unloaded side (low threat). It was hypothesized that pre-perturbation leaning would amplify N1 responses compared to equal-weight stance. A second hypothesis was that high threat conditions would increase the N1 compared to low threat conditions. The results supported the second hypothesis, that changes in cortical and muscle activity were related to characteristics of the threat rather than pre-perturbation changes in excitability of the N1. The effect of postural state on balance reactions was observed in response latency where leaning, regardless of perturbation direction, was associated with delayed N1 potentials compared to equal-weight stance. Scaling of cortical and muscle responses across tasks indicated that changes in posture are resolved at the onset of perturbation and reactive balance control accounts for such threats alongside the perturbation. Study designs investigating dynamic changes in posture versus the static postures used here may further explain the nature of pre-perturbation state modulation

    Neurophysiological markers predicting recovery of standing in humans with chronic motor complete spinal cord injury

    Get PDF
    The appropriate selection of individual-specific spinal cord epidural stimulation (scES) parameters is crucial to re-enable independent standing with self-assistance for balance in individuals with chronic, motor complete spinal cord injury, which is a key achievement toward the recovery of functional mobility. To date, there are no available algorithms that contribute to the selection of scES parameters for facilitating standing in this population. Here, we introduce a novel framework for EMG data processing that implements spectral analysis by continuous wavelet transform and machine learning methods for characterizing epidural stimulation-promoted EMG activity resulting in independent standing. Analysis of standing data collected from eleven motor complete research participants revealed that independent standing was promoted by EMG activity characterized by lower median frequency, lower variability of median frequency, lower variability of activation pattern, lower variability of instantaneous maximum power, and higher total power. Additionally, the high classification accuracy of assisted and independent standing allowed the development of a prediction algorithm that can provide feedback on the effectiveness of muscle-specific activation for standing promoted by the tested scES parameters. This framework can support researchers and clinicians during the process of selection of epidural stimulation parameters for standing motor rehabilitation
    • …
    corecore