34,303 research outputs found

    Tabletop prototyping of serious games for ‘soft skills’ training

    Get PDF
    Serious games offer a relatively low cost, highly engaging alternative to traditional forms of soft skills training. The current paper describes an approach taken to designing a serious game for the training of soft skills. A tabletop prototype of the game was created and evaluated with a group of 24 participants. Initial findings suggest that the game successfully created an environment in which it was advantageous to engage in appropriate collaborative decision making behaviors, as well as providing built-in opportunities for a tutor to guide under-performing groups

    Scoring dynamics across professional team sports: tempo, balance and predictability

    Get PDF
    Despite growing interest in quantifying and modeling the scoring dynamics within professional sports games, relative little is known about what patterns or principles, if any, cut across different sports. Using a comprehensive data set of scoring events in nearly a dozen consecutive seasons of college and professional (American) football, professional hockey, and professional basketball, we identify several common patterns in scoring dynamics. Across these sports, scoring tempo---when scoring events occur---closely follows a common Poisson process, with a sport-specific rate. Similarly, scoring balance---how often a team wins an event---follows a common Bernoulli process, with a parameter that effectively varies with the size of the lead. Combining these processes within a generative model of gameplay, we find they both reproduce the observed dynamics in all four sports and accurately predict game outcomes. These results demonstrate common dynamical patterns underlying within-game scoring dynamics across professional team sports, and suggest specific mechanisms for driving them. We close with a brief discussion of the implications of our results for several popular hypotheses about sports dynamics.Comment: 18 pages, 8 figures, 4 tables, 2 appendice

    Actions Speak Louder Than Goals: Valuing Player Actions in Soccer

    Full text link
    Assessing the impact of the individual actions performed by soccer players during games is a crucial aspect of the player recruitment process. Unfortunately, most traditional metrics fall short in addressing this task as they either focus on rare actions like shots and goals alone or fail to account for the context in which the actions occurred. This paper introduces (1) a new language for describing individual player actions on the pitch and (2) a framework for valuing any type of player action based on its impact on the game outcome while accounting for the context in which the action happened. By aggregating soccer players' action values, their total offensive and defensive contributions to their team can be quantified. We show how our approach considers relevant contextual information that traditional player evaluation metrics ignore and present a number of use cases related to scouting and playing style characterization in the 2016/2017 and 2017/2018 seasons in Europe's top competitions.Comment: Significant update of the paper. The same core idea, but with a clearer methodology, applied on a different data set, and more extensive experiments. 9 pages + 2 pages appendix. To be published at SIGKDD 201

    Measuring multivariate redundant information with pointwise common change in surprisal

    Get PDF
    The problem of how to properly quantify redundant information is an open question that has been the subject of much recent research. Redundant information refers to information about a target variable S that is common to two or more predictor variables Xi . It can be thought of as quantifying overlapping information content or similarities in the representation of S between the Xi . We present a new measure of redundancy which measures the common change in surprisal shared between variables at the local or pointwise level. We provide a game-theoretic operational definition of unique information, and use this to derive constraints which are used to obtain a maximum entropy distribution. Redundancy is then calculated from this maximum entropy distribution by counting only those local co-information terms which admit an unambiguous interpretation as redundant information. We show how this redundancy measure can be used within the framework of the Partial Information Decomposition (PID) to give an intuitive decomposition of the multivariate mutual information into redundant, unique and synergistic contributions. We compare our new measure to existing approaches over a range of example systems, including continuous Gaussian variables. Matlab code for the measure is provided, including all considered examples
    corecore