104 research outputs found

    Efficient paraconsistent reasoning with rules and ontologies for the semantic web

    Get PDF
    Ontologies formalized by means of Description Logics (DLs) and rules in the form of Logic Programs (LPs) are two prominent formalisms in the field of Knowledge Representation and Reasoning. While DLs adhere to the OpenWorld Assumption and are suited for taxonomic reasoning, LPs implement reasoning under the Closed World Assumption, so that default knowledge can be expressed. However, for many applications it is useful to have a means that allows reasoning over an open domain and expressing rules with exceptions at the same time. Hybrid MKNF knowledge bases make such a means available by formalizing DLs and LPs in a common logic, the Logic of Minimal Knowledge and Negation as Failure (MKNF). Since rules and ontologies are used in open environments such as the Semantic Web, inconsistencies cannot always be avoided. This poses a problem due to the Principle of Explosion, which holds in classical logics. Paraconsistent Logics offer a solution to this issue by assigning meaningful models even to contradictory sets of formulas. Consequently, paraconsistent semantics for DLs and LPs have been investigated intensively. Our goal is to apply the paraconsistent approach to the combination of DLs and LPs in hybrid MKNF knowledge bases. In this thesis, a new six-valued semantics for hybrid MKNF knowledge bases is introduced, extending the three-valued approach by Knorr et al., which is based on the wellfounded semantics for logic programs. Additionally, a procedural way of computing paraconsistent well-founded models for hybrid MKNF knowledge bases by means of an alternating fixpoint construction is presented and it is proven that the algorithm is sound and complete w.r.t. the model-theoretic characterization of the semantics. Moreover, it is shown that the new semantics is faithful w.r.t. well-studied paraconsistent semantics for DLs and LPs, respectively, and maintains the efficiency of the approach it extends

    Multi-Context Reasoning in Continuous Data-Flow Environments

    Get PDF
    The field of artificial intelligence, research on knowledge representation and reasoning has originated a large variety of formats, languages, and formalisms. Over the decades many different tools emerged to use these underlying concepts. Each one has been designed with some specific application in mind and are even used nowadays, where the internet is seen as a service to be sufficient for the age of Industry 4.0 and the Internet of Things. In that vision of a connected world, with these many different formalisms and systems, a formal way to uniformly exchange information, such as knowledge and belief is imperative. That alone is not enough, because even more systems get integrated into the online world and nowadays we are confronted with a huge amount of continuously flowing data. Therefore a solution is needed to both, allowing the integration of information and dynamic reaction to the data which is provided in such continuous data-flow environments. This work aims to present a unique and novel pair of formalisms to tackle these two important needs by proposing an abstract and general solution. We introduce and discuss reactive Multi-Context Systems (rMCS), which allow one to utilise different knowledge representation formalisms, so-called contexts which are represented as an abstract logic framework, and exchange their beliefs through bridge rules with other contexts. These multiple contexts need to mutually agree on a common set of beliefs, an equilibrium of belief sets. While different Multi-Context Systems already exist, they are only solving this agreement problem once and are neither considering external data streams, nor are they reasoning continuously over time. rMCS will do this by adding means of reacting to input streams and allowing the bridge rules to reason with this new information. In addition we propose two different kind of bridge rules, declarative ones to find a mutual agreement and operational ones for adapting the current knowledge for future computations. The second framework is more abstract and allows computations to happen in an asynchronous way. These asynchronous Multi-Context Systems are aimed at modelling and describing communication between contexts, with different levels of self-management and centralised management of communication and computation. In this thesis rMCS will be analysed with respect to usability, consistency management, and computational complexity, while we will show how asynchronous Multi-Context Systems can be used to capture the asynchronous ideas and how to model an rMCS with it. Finally we will show how rMCSs are positioned in the current world of stream reasoning and that it can capture currently used technologies and therefore allows one to seamlessly connect different systems of these kinds with each other. Further on this also shows that rMCSs are expressive enough to simulate the mechanics used by these systems to compute the corresponding results on its own as an alternative to already existing ones. For asynchronous Multi-Context Systems, we will discuss how to use them and that they are a very versatile tool to describe communication and asynchronous computation

    To Be Announced

    Full text link
    In this survey we review dynamic epistemic logics with modalities for quantification over information change. Of such logics we present complete axiomatizations, focussing on axioms involving the interaction between knowledge and such quantifiers, we report on their relative expressivity, on decidability and on the complexity of model checking and satisfiability, and on applications. We focus on open problems and new directions for research

    Argument Strength in Probabilistic Argumentation Using Confirmation Theory

    Get PDF
    It is common for people to remark that a particular argument is a strong (or weak) argument. Having a handle on the relative strengths of arguments can help in deciding on which arguments to consider, and on which to present to others in a discussion. In computational models of argument, there is a need for a deeper understanding of argument strength. Our approach in this paper is to draw on confirmation theory for quantifying argument strength, and harness this in a framework based on probabilistic argumentation. We show how we can calculate strength based on the structure of the argument involving defeasible rules. The insights appear transferable to a variety of other structured argumentation systems

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Canonical queries as a query answering device (Information Science)

    Get PDF
    Issued as Annual reports [nos. 1-2], and Final report, Project no. G-36-60

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 28 regular papers presented in this volume were carefully reviewed and selected from 88 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems
    • …
    corecore