32,465 research outputs found

    Individual position diversity in dependence socioeconomic networks increases economic output

    Full text link
    The availability of big data recorded from massively multiplayer online role-playing games (MMORPGs) allows us to gain a deeper understanding of the potential connection between individuals' network positions and their economic outputs. We use a statistical filtering method to construct dependence networks from weighted friendship networks of individuals. We investigate the 30 distinct motif positions in the 13 directed triadic motifs which represent microscopic dependences among individuals. Based on the structural similarity of motif positions, we further classify individuals into different groups. The node position diversity of individuals is found to be positively correlated with their economic outputs. We also find that the economic outputs of leaf nodes are significantly lower than that of the other nodes in the same motif. Our findings shed light on understanding the influence of network structure on economic activities and outputs in socioeconomic system.Comment: 19 pages, 5 figure

    Clustering in complex networks. I. General formalism

    Get PDF
    We develop a full theoretical approach to clustering in complex networks. A key concept is introduced, the edge multiplicity, that measures the number of triangles passing through an edge. This quantity extends the clustering coefficient in that it involves the properties of two --and not just one-- vertices. The formalism is completed with the definition of a three-vertex correlation function, which is the fundamental quantity describing the properties of clustered networks. The formalism suggests new metrics that are able to thoroughly characterize transitive relations. A rigorous analysis of several real networks, which makes use of the new formalism and the new metrics, is also provided. It is also found that clustered networks can be classified into two main groups: the {\it weak} and the {\it strong transitivity} classes. In the first class, edge multiplicity is small, with triangles being disjoint. In the second class, edge multiplicity is high and so triangles share many edges. As we shall see in the following paper, the class a network belongs to has strong implications in its percolation properties

    Quantifying Differential Privacy under Temporal Correlations

    Full text link
    Differential Privacy (DP) has received increased attention as a rigorous privacy framework. Existing studies employ traditional DP mechanisms (e.g., the Laplace mechanism) as primitives, which assume that the data are independent, or that adversaries do not have knowledge of the data correlations. However, continuously generated data in the real world tend to be temporally correlated, and such correlations can be acquired by adversaries. In this paper, we investigate the potential privacy loss of a traditional DP mechanism under temporal correlations in the context of continuous data release. First, we model the temporal correlations using Markov model and analyze the privacy leakage of a DP mechanism when adversaries have knowledge of such temporal correlations. Our analysis reveals that the privacy leakage of a DP mechanism may accumulate and increase over time. We call it temporal privacy leakage. Second, to measure such privacy leakage, we design an efficient algorithm for calculating it in polynomial time. Although the temporal privacy leakage may increase over time, we also show that its supremum may exist in some cases. Third, to bound the privacy loss, we propose mechanisms that convert any existing DP mechanism into one against temporal privacy leakage. Experiments with synthetic data confirm that our approach is efficient and effective.Comment: appears at ICDE 201

    Patterns of link reciprocity in directed networks

    Full text link
    We address the problem of link reciprocity, the non-random presence of two mutual links between pairs of vertices. We propose a new measure of reciprocity that allows the ordering of networks according to their actual degree of correlation between mutual links. We find that real networks are always either correlated or anticorrelated, and that networks of the same type (economic, social, cellular, financial, ecological, etc.) display similar values of the reciprocity. The observed patterns are not reproduced by current models. This leads us to introduce a more general framework where mutual links occur with a conditional connection probability. In some of the studied networks we discuss the form of the conditional connection probability and the size dependence of the reciprocity.Comment: Final version accepted for publication on Physical Review Letter

    Entropy Rate of Diffusion Processes on Complex Networks

    Full text link
    The concept of entropy rate for a dynamical process on a graph is introduced. We study diffusion processes where the node degrees are used as a local information by the random walkers. We describe analitically and numerically how the degree heterogeneity and correlations affect the diffusion entropy rate. In addition, the entropy rate is used to characterize complex networks from the real world. Our results point out how to design optimal diffusion processes that maximize the entropy for a given network structure, providing a new theoretical tool with applications to social, technological and communication networks.Comment: 4 pages (APS format), 3 figures, 1 tabl
    corecore