26 research outputs found

    Quantifying admissible undersampling for sparsity-exploiting iterative image reconstruction in X-ray CT

    Full text link
    Iterative image reconstruction (IIR) with sparsity-exploiting methods, such as total variation (TV) minimization, investigated in compressive sensing (CS) claim potentially large reductions in sampling requirements. Quantifying this claim for computed tomography (CT) is non-trivial, because both full sampling in the discrete-to-discrete imaging model and the reduction in sampling admitted by sparsity-exploiting methods are ill-defined. The present article proposes definitions of full sampling by introducing four sufficient-sampling conditions (SSCs). The SSCs are based on the condition number of the system matrix of a linear imaging model and address invertibility and stability. In the example application of breast CT, the SSCs are used as reference points of full sampling for quantifying the undersampling admitted by reconstruction through TV-minimization. In numerical simulations, factors affecting admissible undersampling are studied. Differences between few-view and few-detector bin reconstruction as well as a relation between object sparsity and admitted undersampling are quantified.Comment: Revised version that was submitted to IEEE Transactions on Medical Imaging on 8/16/201

    Sparse Image Reconstruction in Computed Tomography

    Get PDF

    Empirical average-case relation between undersampling and sparsity in X-ray CT

    Get PDF
    Abstract. In x-ray computed tomography (CT) it is generally acknowledged that reconstruction methods exploiting image sparsity allow reconstruction from a significantly reduced number of projections. The use of such recon-struction methods is motivated by recent progress in compressed sensing (CS). However, the CS framework provides neither guarantees of accurate CT re-construction, nor any relation between sparsity and a sufficient number of measurements for recovery, i.e., perfect reconstruction from noise-free data. We consider reconstruction through 1-norm minimization, as proposed in CS, from data obtained using a standard CT fan-beam sampling pattern. In em-pirical simulation studies we establish quantitatively a relation between the image sparsity and the sufficient number of measurements for recovery within image classes motivated by tomographic applications. We show empirically that the specific relation depends on the image class and in many cases ex-hibits a sharp phase transition as seen in CS, i.e. same-sparsity image require the same number of projections for recovery. Finally we demonstrate that th

    How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray CT

    Get PDF
    We introduce phase-diagram analysis, a standard tool in compressed sensing, to the X-ray CT community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In compressed sensing a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling: First we demonstrate that there are cases where X-ray CT empirically performs comparable with an optimal compressed sensing strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared to standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization.Comment: 24 pages, 13 figure

    Testable uniqueness conditions for empirical assessment of undersampling levels in total variation-regularized X-ray CT

    Get PDF
    We study recoverability in fan-beam computed tomography (CT) with sparsity and total variation priors: how many underdetermined linear measurements suffice for recovering images of given sparsity? Results from compressed sensing (CS) establish such conditions for, e.g., random measurements, but not for CT. Recoverability is typically tested by checking whether a computed solution recovers the original. This approach cannot guarantee solution uniqueness and the recoverability decision therefore depends on the optimization algorithm. We propose new computational methods to test recoverability by verifying solution uniqueness conditions. Using both reconstruction and uniqueness testing we empirically study the number of CT measurements sufficient for recovery on new classes of sparse test images. We demonstrate an average-case relation between sparsity and sufficient sampling and observe a sharp phase transition as known from CS, but never established for CT. In addition to assessing recoverability more reliably, we show that uniqueness tests are often the faster option.Comment: 18 pages, 7 figures, submitte
    corecore