42 research outputs found

    Estimating Methane Emissions in Canada Using Atmospheric Observations from Earth to Space

    Get PDF
    Methane is a significant greenhouse gas with 25–32 times the global warming potential of carbon dioxide. Global sources and sinks of methane are understood to be 550 ± 60 Tg a-1. The possible causes of changing decadal trends in atmospheric methane concentrations since the 1990's is not well understood, since this requires a precision in global emissions quantification better than 20 Tg a-1. Atmospheric observations at the local, regional, or national scale can provide "top-down" constraints on emissions to verify "bottom-up" emissions that may not be well characterized. Cavity ring down spectroscopy (CRDS) instruments deliver highly precise in-situ measurements of methane, with 1 Hz precision better than 2 ppb. A comprehensive aircraft campaign in the Athabasca Oil Sands Region of Alberta (AOSR) in summer 2013, led by Environment and Climate Change Canada (ECCC), deployed a CRDS alongside a suite of instrumentation to measure atmospheric pollutants and meteorological parameters. These observations allowed for the comprehensive identification and quantification of methane emissions from unconventional oil extraction. Emissions estimates were 48% higher than those reported in the national greenhouse gas inventory. A series of lower cost follow up campaigns in 2014 and 2017 using a CRDS instrument mobilized with a vehicle allowed for cold season monitoring of emissions and select quantification where atmospheric parameters were favorable, showing continued discrepancies with inventory reporting. To estimate emissions across Canada at the national scale, methane measurements from ECCC long-term monitoring stations over 2010-2015 were utilized in conjunction with satellite remote sensing observations from the Greenhouse Gas Observing Satellite (GOSAT) operated by the Japanese Aerospace Agency (JAXA). These atmospheric observations were assimilated in the GEOS-Chem chemical transport model to constrain emissions using a Bayesian inverse modelling methodology. Results showed 42% higher emissions from anthropogenic sources and 21% lower emissions from natural sources, which are mostly wetlands, when compared to the prior estimate. Through the combinations of all studies presented herein, approximately 2–4 Tg a-1 of methane emissions in Canada were reallocated for the year of 2013, where 1–3 Tg a-1 was added to anthropogenic sources and 2–4 Tg a-1 was deducted from natural sources, which is substantial relative to the anthropogenic inventory in Canada which is 4–5 Tg a-1. This reallocation is 0.4–0.8% of the entire global budget of 550 Tg a-1, where only a ~3% change in the source-sink balance can cause the observed trends in atmospheric methane. These results show that atmospheric observations from surface, aircraft and satellites are critical for constraining the methane budget in Canada, and improvements are necessary to these types of atmospheric observations over the world to constrain the methane cycle within the precision needed to understand decadal trends

    Recent Advances Toward Transparent Methane Emissions Monitoring: A Review

    Get PDF
    Given that anthropogenic greenhouse gas (GHG) emissions must be immediately reduced to avoid drastic increases in global temperature, methane emissions have been placed center stage in the fight against climate change. Methane has a significantly larger warming potential than carbon dioxide. A large percentage of methane emissions are in the form of industry emissions, some of which can now be readily identified and mitigated. This review considers recent advances in methane detection that allow accurate and transparent monitoring, which are needed for reducing uncertainty in source attribution and evaluating progress in emissions reductions. A particular focus is on complementary methods operating at different scales with applications for the oil and gas industry, allowing rapid detection of large point sources and addressing inconsistencies of emissions inventories. Emerging airborne and satellite imaging spectrometers are advancing our understanding and offer new top-down assessment methods to complement bottom-up methods. Successfully merging estimates across scales is vital for increased certainty regarding greenhouse gas emissions and can inform regulatory decisions. The development of comprehensive, transparent, and spatially resolved top-down and bottom-up inventories will be crucial for holding nations accountable for their climate commitments

    Best Available Techniques (BAT) Reference Document for the Management of Waste from Extractive Industries in accordance with Directive 2006/21/EC

    Get PDF
    This document, Best Available Techniques Reference Document for the Management of Waste from Extractive Industries, in accordance with Directive 2006/21/EC, abbreviated as MWEI BREF, is a review of the Reference Document for Management of Tailings and Waste-Rock in Mining Activities (MTWR BREF). This review is the result of an exchange of information between experts from EU Member States, industries concerned, non-governmental organisations promoting environmental protection and the European Commission. The reviewed document presents up-dated data and information on the management of waste from extractive industries, including information on BAT, associated monitoring, and developments in them. It is published by the European Commission pursuant Article 21(3) of Directive 2006/21/EC on the management of waste from extractive industries. This document presents data and information on the following: - General information and key figures on extractive industries in Europe, extractive waste generation, extractive waste facilities and key environmental issues (Chapter 1). - Applied processes and techniques for the management of extractive waste (Chapter 2). - Emission and consumption levels resulting from the management of extractive waste (Chapter 3). - Techniques to consider in the determination of Best Available Techniques (Chapter 4). This includes generic management and waste hierarchy techniques, risk-specific techniques to ensure safety, techniques for the prevention or minimisation of water status deterioration, techniques for the prevention or minimisation of air and soil pollution and other risk-specific techniques. - Best available techniques conclusions (Chapter 5). - Emerging techniques (Chapter 6). This includes techniques that were reported at different levels of technology readiness. - Remarks and recommendations for future work (Chapter 7).JRC.B.5-Circular Economy and Industrial Leadershi

    Quantifying water use and rainfall partitioning of dominant tree species in a post-mined landscape in the Athabasca Oil Sands Region, Alberta

    Get PDF
    Large-scale oil sands mining has caused significant disturbances to forest and wetland ecosystems in the Western Boreal Plains of Northeastern Alberta. Provincial and federal laws mandate restoration of these systems in an attempt to return the landscape to pre-disturbed conditions. Reclaiming these important ecosystems has faced many challenges including re-vegetation of uplands to a state of self-sustainability and productivity. The Nikanotee Fen Watershed in Fort McMurray, Alberta, is a post-mined landscape consisting of a constructed upland-fen peatland connected through runoff and groundwater. The design of these systems’ impacts many components of the ecosystem, including vegetation growth and productivity. Changes in soil moisture dynamics at the site have been attributed to the development in soil and vegetation cover in the upland, leading to significant changes in the ecosystem. The trajectory of reclaimed sites depends on the population of tree species, such as conifers or broadleaf. Development of the tree canopy will lead to increases in precipitation interception and transpiration, ultimately reducing water available for recharge to the adjacent wetland. Characterizing vegetation distribution and composition and their impacts on the water balance may help improve reclamation techniques for future projects. Understanding the functioning of constructed ecosystems and the controls of tree communities on water use will feedback to influence soil moisture dynamics. Soil moisture dynamics dictate water availability for tree growth, recharge and system function, ultimately influencing the uplands ability to support low-lying systems. The objectives of the study are to assess the trends in transpiration of dominant tree species throughout the growing season; quantify throughfall, stemflow and interception of dominant tree species and understand the role they play in intercepting precipitation and its impact on near-surface soil moisture regime and tree water use. The study used a variety of meteorological, hydrological and biometric methods to assess the suitability of dominant tree species used in reclamation projects. To examine the variability in tree water use across the upland, vegetation surveys were completed, and several dominant tree species were instrumented with Stem Heat Balance sap flow sensors to determine individual species’ transpiration rates. Rainfall was partitioned into interception, throughfall and stemflow alongside monitoring soil moisture dynamics and soil water potential to determine the plant available water. Results indicate that tree transpiration is a dominant control on water use at the site averaging 51% of total evapotranspiration and is controlled by water availability. Canopy interception is beginning to play an important role in partitioning growing season rainfall with broadleaf tree species, Populus balsamifera and Populus tremuloides, averaging 25.7% and 28.5%, respectively. Coniferous tree species, Picea mariana and Pinus banksiana, averaged 34.5% and 31.5%, respectively. While vegetation is currently in the early stages of development, rainfall redistribution may become an important consideration when selecting tree communities in reclamation projects
    corecore