782 research outputs found

    Human interaction with digital ink : legibility measurement and structural analysis

    Get PDF
    Literature suggests that it is possible to design and implement pen-based computer interfaces that resemble the use of pen and paper. These interfaces appear to allow users freedom in expressing ideas and seem to be familiar and easy to use. Different ideas have been put forward concerning this type of interface, however despite the commonality of aims and problems faced, there does not appear to be a common approach to their design and implementation. This thesis aims to progress the development of pen-based computer interfaces that resemble the use of pen and paper. To do this, a conceptual model is proposed for interfaces that enable interaction with "digital ink". This conceptual model is used to organize and analyse the broad range of literature related to pen-based interfaces, and to identify topics that are not sufficiently addressed by published research. Two issues highlighted by the model: digital ink legibility and digital ink structuring, are then investigated. In the first investigation, methods are devised to objectively and subjectively measure the legibility of handwritten script. These methods are then piloted in experiments that vary the horizontal rendering resolution of handwritten script displayed on a computer screen. Script legibility is shown to decrease with rendering resolution, after it drops below a threshold value. In the second investigation, the clustering of digital ink strokes into words is addressed. A method of rating the accuracy of clustering algorithms is proposed: the percentage of words spoiled. The clustering error rate is found to vary among different writers, for a clustering algorithm using the geometric features of both ink strokes, and the gaps between them. The work contributes a conceptual interface model, methods of measuring digital ink legibility, and techniques for investigating stroke clustering features, to the field of digital ink interaction research

    Drawing, Handwriting Processing Analysis: New Advances and Challenges

    No full text
    International audienceDrawing and handwriting are communicational skills that are fundamental in geopolitical, ideological and technological evolutions of all time. drawingand handwriting are still useful in defining innovative applications in numerous fields. In this regard, researchers have to solve new problems like those related to the manner in which drawing and handwriting become an efficient way to command various connected objects; or to validate graphomotor skills as evident and objective sources of data useful in the study of human beings, their capabilities and their limits from birth to decline

    Modeling cognition with generative neural networks: The case of orthographic processing

    Get PDF
    This thesis investigates the potential of generative neural networks to model cognitive processes. In contrast to many popular connectionist models, the computational framework adopted in this research work emphasizes the generative nature of cognition, suggesting that one of the primary goals of cognitive systems is to learn an internal model of the surrounding environment that can be used to infer causes and make predictions about the upcoming sensory information. In particular, we consider a powerful class of recurrent neural networks that learn probabilistic generative models from experience in a completely unsupervised way, by extracting high-order statistical structure from a set of observed variables. Notably, this type of networks can be conveniently formalized within the more general framework of probabilistic graphical models, which provides a unified language to describe both neural networks and structured Bayesian models. Moreover, recent advances allow to extend basic network architectures to build more powerful systems, which exploit multiple processing stages to perform learning and inference over hierarchical models, or which exploit delayed recurrent connections to process sequential information. We argue that these advanced network architectures constitute a promising alternative to the more traditional, feed-forward, supervised neural networks, because they more neatly capture the functional and structural organization of cortical circuits, providing a principled way to combine top-down, high-level contextual information with bottom-up, sensory evidence. We provide empirical support justifying the use of these models by studying how efficient implementations of hierarchical and temporal generative networks can extract information from large datasets containing thousands of patterns. In particular, we perform computational simulations of recognition of handwritten and printed characters belonging to different writing scripts, which are successively combined spatially or temporally in order to build more complex orthographic units such as those constituting English words

    Robust recognition and exploratory analysis of crystal structures using machine learning

    Get PDF
    In den Materialwissenschaften läuten Künstliche-Intelligenz Methoden einen Paradigmenwechsel in Richtung Big-data zentrierter Forschung ein. Datenbanken mit Millionen von Einträgen, sowie hochauflösende Experimente, z.B. Elektronenmikroskopie, enthalten eine Fülle wachsender Information. Um diese ungenützten, wertvollen Daten für die Entdeckung verborgener Muster und Physik zu nutzen, müssen automatische analytische Methoden entwickelt werden. Die Kristallstruktur-Klassifizierung ist essentiell für die Charakterisierung eines Materials. Vorhandene Daten bieten vielfältige atomare Strukturen, enthalten jedoch oft Defekte und sind unvollständig. Eine geeignete Methode sollte diesbezüglich robust sein und gleichzeitig viele Systeme klassifizieren können, was für verfügbare Methoden nicht zutrifft. In dieser Arbeit entwickeln wir ARISE, eine Methode, die auf Bayesian deep learning basiert und mehr als 100 Strukturklassen robust und ohne festzulegende Schwellwerte klassifiziert. Die einfach erweiterbare Strukturauswahl ist breit gefächert und umfasst nicht nur Bulk-, sondern auch zwei- und ein-dimensionale Systeme. Für die lokale Untersuchung von großen, polykristallinen Systemen, führen wir die strided pattern matching Methode ein. Obwohl nur auf perfekte Strukturen trainiert, kann ARISE stark gestörte mono- und polykristalline Systeme synthetischen als auch experimentellen Ursprungs charakterisieren. Das Model basiert auf Bayesian deep learning und ist somit probabilistisch, was die systematische Berechnung von Unsicherheiten erlaubt, welche mit der Kristallordnung von metallischen Nanopartikeln in Elektronentomographie-Experimenten korrelieren. Die Anwendung von unüberwachtem Lernen auf interne Darstellungen des neuronalen Netzes enthüllt Korngrenzen und nicht ersichtliche Regionen, die über interpretierbare geometrische Eigenschaften verknüpft sind. Diese Arbeit ermöglicht die Analyse atomarer Strukturen mit starken Rauschquellen auf bisher nicht mögliche Weise.In materials science, artificial-intelligence tools are driving a paradigm shift towards big data-centric research. Large computational databases with millions of entries and high-resolution experiments such as electron microscopy contain large and growing amount of information. To leverage this under-utilized - yet very valuable - data, automatic analytical methods need to be developed. The classification of the crystal structure of a material is essential for its characterization. The available data is structurally diverse but often defective and incomplete. A suitable method should therefore be robust with respect to sources of inaccuracy, while being able to treat multiple systems. Available methods do not fulfill both criteria at the same time. In this work, we introduce ARISE, a Bayesian-deep-learning based framework that can treat more than 100 structural classes in robust fashion, without any predefined threshold. The selection of structural classes, which can be easily extended on demand, encompasses a wide range of materials, in particular, not only bulk but also two- and one-dimensional systems. For the local study of large, polycrystalline samples, we extend ARISE by introducing so-called strided pattern matching. While being trained on ideal structures only, ARISE correctly characterizes strongly perturbed single- and polycrystalline systems, from both synthetic and experimental resources. The probabilistic nature of the Bayesian-deep-learning model allows to obtain principled uncertainty estimates which are found to be correlated with crystalline order of metallic nanoparticles in electron-tomography experiments. Applying unsupervised learning to the internal neural-network representations reveals grain boundaries and (unapparent) structural regions sharing easily interpretable geometrical properties. This work enables the hitherto hindered analysis of noisy atomic structural data

    Toward a formal theory for computing machines made out of whatever physics offers: extended version

    Full text link
    Approaching limitations of digital computing technologies have spurred research in neuromorphic and other unconventional approaches to computing. Here we argue that if we want to systematically engineer computing systems that are based on unconventional physical effects, we need guidance from a formal theory that is different from the symbolic-algorithmic theory of today's computer science textbooks. We propose a general strategy for developing such a theory, and within that general view, a specific approach that we call "fluent computing". In contrast to Turing, who modeled computing processes from a top-down perspective as symbolic reasoning, we adopt the scientific paradigm of physics and model physical computing systems bottom-up by formalizing what can ultimately be measured in any physical substrate. This leads to an understanding of computing as the structuring of processes, while classical models of computing systems describe the processing of structures.Comment: 76 pages. This is an extended version of a perspective article with the same title that will appear in Nature Communications soon after this manuscript goes public on arxi
    corecore