299 research outputs found

    Quantifier elimination for the reals with a predicate for the powers of two

    Get PDF
    In 1985, van den Dries showed that the theory of the reals with a predicate for the integer powers of two admits quantifier elimination in an expanded language, and is hence decidable. He gave a model-theoretic argument, which provides no apparent bounds on the complexity of a decision procedure. We provide a syntactic argument that yields a procedure that is primitive recursive, although not elementary. In particular, we show that it is possible to eliminate a single block of existential quantifiers in time 2O(n)02^0_{O(n)}, where nn is the length of the input formula and 2kx2_k^x denotes kk-fold iterated exponentiation

    Decidability of Univariate Real Algebra with Predicates for Rational and Integer Powers

    Full text link
    We prove decidability of univariate real algebra extended with predicates for rational and integer powers, i.e., (xn∈Q)(x^n \in \mathbb{Q}) and (xn∈Z)(x^n \in \mathbb{Z}). Our decision procedure combines computation over real algebraic cells with the rational root theorem and witness construction via algebraic number density arguments.Comment: To appear in CADE-25: 25th International Conference on Automated Deduction, 2015. Proceedings to be published by Springer-Verla

    Combining decision procedures for the reals

    Full text link
    We address the general problem of determining the validity of boolean combinations of equalities and inequalities between real-valued expressions. In particular, we consider methods of establishing such assertions using only restricted forms of distributivity. At the same time, we explore ways in which "local" decision or heuristic procedures for fragments of the theory of the reals can be amalgamated into global ones. Let Tadd[Q] be the first-order theory of the real numbers in the language of ordered groups, with negation, a constant 1, and function symbols for multiplication by rational constants. Let Tmult[Q] be the analogous theory for the multiplicative structure, and let T[Q] be the union of the two. We show that although T[Q] is undecidable, the universal fragment of T[Q] is decidable. We also show that terms of T[Q]can fruitfully be put in a normal form. We prove analogous results for theories in which Q is replaced, more generally, by suitable subfields F of the reals. Finally, we consider practical methods of establishing quantifier-free validities that approximate our (impractical) decidability results.Comment: Will appear in Logical Methods in Computer Scienc

    The real field with an irrational power function and a dense multiplicative subgroup

    Full text link
    This paper provides a first example of a model theoretically well behaved structure consisting of a proper o-minimal expansion of the real field and a dense multiplicative subgroup of finite rank. Under certain Schanuel conditions, a quantifier elimination result will be shown for the real field with an irrational power function and a dense multiplicative subgroup of finite rank whose elements are algebraic over the field generated by the irrational power. Moreover, every open set definable in this structure is already definable in the reduct given by just the real field and the irrational power function
    • …
    corecore