420 research outputs found

    A Generalized Framework for Virtual Substitution

    Full text link
    We generalize the framework of virtual substitution for real quantifier elimination to arbitrary but bounded degrees. We make explicit the representation of test points in elimination sets using roots of parametric univariate polynomials described by Thom codes. Our approach follows an early suggestion by Weispfenning, which has never been carried out explicitly. Inspired by virtual substitution for linear formulas, we show how to systematically construct elimination sets containing only test points representing lower bounds

    Adapting Real Quantifier Elimination Methods for Conflict Set Computation

    Get PDF
    The satisfiability problem in real closed fields is decidable. In the context of satisfiability modulo theories, the problem restricted to conjunctive sets of literals, that is, sets of polynomial constraints, is of particular importance. One of the central problems is the computation of good explanations of the unsatisfiability of such sets, i.e.\ obtaining a small subset of the input constraints whose conjunction is already unsatisfiable. We adapt two commonly used real quantifier elimination methods, cylindrical algebraic decomposition and virtual substitution, to provide such conflict sets and demonstrate the performance of our method in practice

    Better Answers to Real Questions

    Full text link
    We consider existential problems over the reals. Extended quantifier elimination generalizes the concept of regular quantifier elimination by providing in addition answers, which are descriptions of possible assignments for the quantified variables. Implementations of extended quantifier elimination via virtual substitution have been successfully applied to various problems in science and engineering. So far, the answers produced by these implementations included infinitesimal and infinite numbers, which are hard to interpret in practice. We introduce here a post-processing procedure to convert, for fixed parameters, all answers into standard real numbers. The relevance of our procedure is demonstrated by application of our implementation to various examples from the literature, where it significantly improves the quality of the results

    Real root finding for equivariant semi-algebraic systems

    Get PDF
    Let RR be a real closed field. We consider basic semi-algebraic sets defined by nn-variate equations/inequalities of ss symmetric polynomials and an equivariant family of polynomials, all of them of degree bounded by 2d<n2d < n. Such a semi-algebraic set is invariant by the action of the symmetric group. We show that such a set is either empty or it contains a point with at most 2d12d-1 distinct coordinates. Combining this geometric result with efficient algorithms for real root finding (based on the critical point method), one can decide the emptiness of basic semi-algebraic sets defined by ss polynomials of degree dd in time (sn)O(d)(sn)^{O(d)}. This improves the state-of-the-art which is exponential in nn. When the variables x1,,xnx_1, \ldots, x_n are quantified and the coefficients of the input system depend on parameters y1,,yty_1, \ldots, y_t, one also demonstrates that the corresponding one-block quantifier elimination problem can be solved in time (sn)O(dt)(sn)^{O(dt)}

    What is a closed-form number?

    Full text link
    If a student asks for an antiderivative of exp(x^2), there is a standard reply: the answer is not an elementary function. But if a student asks for a closed-form expression for the real root of x = cos(x), there is no standard reply. We propose a definition of a closed-form expression for a number (as opposed to a *function*) that we hope will become standard. With our definition, the question of whether the root of x = cos(x) has a closed form is, perhaps surprisingly, still open. We show that Schanuel's conjecture in transcendental number theory resolves questions like this, and we also sketch some connections with Tarski's problem of the decidability of the first-order theory of the reals with exponentiation. Many (hopefully accessible) open problems are described.Comment: 11 pages; submitted to Amer. Math. Monthl
    corecore