92 research outputs found

    Compositional approach to performance modelling

    Get PDF

    Markovian Processes for Quantitative Information Leakage

    Get PDF
    Quantification of information leakage is a successful approach for evaluating the security of a system. It models the system to be analyzed as a channel with the secret as the input and an output as observable by the attacker as the output, and applies information theory to quantify the amount of information transmitted through such channel, thus effectively quantifying how many bits of the secret can be inferred by the attacker by analyzing the system’s output.Channels are usually encoded as matrices of conditional probabilities, known as channel matrices. Such matrices grow exponentially in the size of the secret and observables, are cumbersome to compute and store, encode both the behavior of the system and assumptions about the attacker, and assume an input-output behavior of the system. For these reasons we propose to model the system-attacker scenario with Markovian models.We show that such models are more compact and treatable than channel matrices. Also, they clearly separate the behavior of the system from the assumptions about the attacker, and can represent even non-terminating behavior in a finite model. We provide techniques and algorithms to model and analyze both deterministic and randomized processes with Markovian models and to compute their informationleakage for a very general model of attacker. We present the QUAIL tool that automates such analysis and is able to compute the information leakage of an imperative WHILE language. Finally, we show how to use QUAIL to analyze some interesting cases of secret-dependent protocols

    Markovian Processes for Quantitative Information Leakage

    Get PDF

    Markovian Processes for Quantitative Information Leakage

    Get PDF
    Quantification of information leakage is a successful approach for evaluating the security of a system. It models the system to be analyzed as a channel with the secret as the input and an output as observable by the attacker as the output, and applies information theory to quantify the amount of information transmitted through such channel, thus effectively quantifying how many bits of the secret can be inferred by the attacker by analyzing the system’s output.Channels are usually encoded as matrices of conditional probabilities, known as channel matrices. Such matrices grow exponentially in the size of the secret and observables, are cumbersome to compute and store, encode both the behavior of the system and assumptions about the attacker, and assume an input-output behavior of the system. For these reasons we propose to model the system-attacker scenario with Markovian models.We show that such models are more compact and treatable than channel matrices. Also, they clearly separate the behavior of the system from the assumptions about the attacker, and can represent even non-terminating behavior in a finite model. We provide techniques and algorithms to model and analyze both deterministic and randomized processes with Markovian models and to compute their informationleakage for a very general model of attacker. We present the QUAIL tool that automates such analysis and is able to compute the information leakage of an imperative WHILE language. Finally, we show how to use QUAIL to analyze some interesting cases of secret-dependent protocols

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Using interventions to discover quantum causal structure

    Get PDF

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications
    • 

    corecore