67 research outputs found

    Reconstruction 3D personnalisée de la colonne vertébrale à partir d'images radiographiques non-calibrées

    Get PDF
    Les systèmes de reconstruction stéréo-radiographique 3D -- La colonne vertébrale -- La scoliose idiopathique adolescente -- Évolution des systèmes de reconstruction 3D -- Filtres de rehaussement d'images -- Techniques de segmentation -- Les méthodes de calibrage -- Les méthodes de reconstruction 3D -- Problématique, hypothèses, objectifs et méthode générale -- Three-dimensional reconstruction of the scoliotic spine and pelvis from uncalibrated biplanar X-ray images -- A versatile 3D reconstruction system of the spine and pelvis for clinical assessment of spinal deformities -- Simulation experiments -- Clinical validation -- A three-dimensional retrospective analysis of the evolution of spinal instrumentation for the correction of adolescent idiopathic scoliosis -- Auto-calibrage d'un système à rayons-X à partir de primitives de haut niveau -- Segmentation de la colonne vertébrale -- Approche hiérarchique d'auto-calibrage d'un système d'acquisition à rayons-X -- Personalized 3D reconstruction of the scoliotic spine from hybrid statistical and X-ray image-based models -- Validation protocol

    Studying experimental variability in EEG and tDCS through uncertainty and sensitivity analyses

    Full text link
    In neuroscience, simulating electric current in the head of a subject is of main interest for both electroencephalography (EEG) and transcranial direct current stimulation (tDCS). EEG is used to reconstruct the electric activity of the brain based on the measured electric potential on the scalp. On the other hand, tDCS consists in injecting a small electric current through the head of a subject to modulate the activity of a specific brain region. Such simulations rely heavily on the electric conductivity of the biological tissues composing the head. Unfortunately, there is currently no effective and non-invasive method to measure it accurately for each individual. Consequently, researchers and practitioners have to set arbitrary values chosen from the literature, despite the fact that this property has been shown to vary widely both inter- and intra-subject. The simulations also depend on the geometry of the tissues and on how they are modelled. In this thesis, we studied the influence of different skull models and of the electrical conductivity of the tissues on the EEG forward problem. We also analysed the effect of the uncertainty in the conductivity on the electric field induced in different regions of the brain by several stimulating electrode montages in tDCS. To support these experiments, we developed a python package named Shamo which provides the user with tools to perform mesh generation, current simulation, surrogate modelling and sensitivity and uncertainty analyses with a user-friendly API. It interfaces with industrial grade software to perform the computationally intensive tasks and is easy to use on distributed architectures. The present work describes both Shamo and the results that it helped to obtain for the different experiments.Dans le domaine des neurosciences, la simulation du courant électrique dans la tête d’un sujet est d’un intérêt majeur, tant pour l’électroencéphalographie (EEG) que pour la stimulation transcrânienne à courant continu (tDCS). L’EEG est utilisée pour reconstruire l’activité électrique du cerveau à partir du potentiel électrique mesuré sur le cuir chevelu. D’autre part, la tDCS consiste à injecter un petit courant électrique dans la tête d’un sujet pour moduler l’activité d’une région spécifique du cerveau. De telles simulations dépendent de la conductivité électrique des tissus biologiques composant la tête. Malheureusement, il n’existe actuellement aucune méthode efficace et non invasive pour la mesurer avec précision pour chaque individu. Par conséquent, les chercheurs et les praticiens doivent fixer des valeurs arbitraires choisies dans la littérature, malgré le fait qu’il a été démontré que cette propriété varie considérablement entre les sujets et à l’intérieur d’un même sujet. Les simulations dépendent également de la géométrie des tissus et de la façon dont ils sont modélisés. Dans cette thèse, nous avons étudié l’influence de différents modèles de crâne et de la conductivité électrique des tissus sur le problème direct de l’EEG. Nous avons également analysé l’effet de la conductivité sur le champ électrique induit dans différentes régions du cerveau par plusieurs montages d’électrodes en tDCS. Pour soutenir ces expériences, nous avons développé un package python nommé Shamo qui fournit à l’utilisateur des outils pour effectuer la génération de maillage, la simulation de courant, la génération de modèles de substitution et les analyses de sensibilité et d’incertitude avec une API simple. Il s’interface avec des logiciels de qualité industrielle pour effectuer les tâches de calcul intensif et est facile à utiliser sur des architectures distribuées. Ce travail décrit à la fois Shamo et les résultats que cet outil a permis d’obtenir pour les différentes expériences

    Contribution à la modélisation géométrique et mécanique du tronc de l'enfant

    No full text
    Despite of the use of homologated Child Restraint Systems, 2,321 children were killed on European roads in 2007. This social and economical major issue is explained by the lack of biomechanical knowledge on injury mechanisms and associated physical parameters, specifically for children. The present project was supported by the GDR “Biomécanique des chocs“ (CNRS/INRETS/GIE PSA Renault) and funded by the French National Research Agency. The aim of this study is to improve the biomechanical knowledge of the children trunk. The dynamic response of the trunk is essential because it is the main segment used for the whole body restraint when a car crash occurs. In order to improve the reliability of children's models, subject-specific inertial parameters of the body segments were calculated using 3D reconstructions from low dose biplanar X-rays. The fine description of the ribs, costal cartilage and sternum was performed on 3D models from CT-scan. The 3D geometry of the intra-abdominal child organs (kidney, spleen and liver) was defined by measurements based upon 3D modeling using abdominal CT-scan. The quantification of the thoracic and abdominal behaviors was obtained in observing in vivo trunk manipulations carried out within the framework of usual physiotherapist treatments. This research will be used to improve or develop the trunk bio-fidelity of child models and constitute a first step toward an enhanced knowledge of the child biomechanics based directly on in vivo experimentation.Malgré l'obligation d'utiliser des Dispositifs de Retenue Enfant homologués, 2 321 enfants ont été tués en 2007 sur les routes européennes. Ce problème socio-économique majeur est expliqué par le manque de connaissance biomécanique de l'enfant. Le développement de modèles d'enfant nécessite la compréhension de ses paramètres biomécaniques et critères lésionnels. Ce projet, supporté par le GDR « Biomécanique des chocs » (CNRS/INRETS/GIE PSA Renault) et financé par l'Agence Nationale de la Recherche (ANR-06-BLAN-0385 SECUR_ENFANT), a pour objectif de contribuer à l'amélioration de ces connaissances, en s'intéressant particulièrement au tronc de l'enfant. La réponse mécanique de ce segment corporel est essentielle car c'est le principal composant utilisé lors de la retenue en choc automobile. Les paramètres inertiels des segments corporels ont été calculés à partir de reconstructions personnalisées 3D issues de radiographies biplanaires basse dose. La description précise des côtes, du cartilage costal et du sternum a été évaluée à partir de modélisations 3D issues de données d'imagerie scanner. Des reconstructions de reins, rates et foies à partir de scanners abdominaux ont permis de définir la géométrie et le positionnement de ces organes dans le système ostéoarticulaire. Enfin, le comportement mécanique du thorax et de l'abdomen d'enfants a été quantifié à partir de manipulations in vivo faites en routine clinique de kinésithérapie respiratoire. Les résultats de ce travail, basés sur des examens in vivo, sont utiles à l'amélioration de la biofidélité du tronc des modèles d'enfants et contribuent à l'approfondissement des connaissances biomécaniques de l'enfant

    Progenitor cells in auricular cartilage demonstrate promising cartilage regenerative potential in 3D hydrogel culture

    Get PDF
    The reconstruction of auricular deformities is a very challenging surgical procedure that could benefit from a tissue engineering approach. Nevertheless, a major obstacle is presented by the acquisition of sufficient amounts of autologous cells to create a cartilage construct the size of the human ear. Extensively expanded chondrocytes are unable to retain their phenotype, while bone marrow-derived mesenchymal stromal cells (MSC) show endochondral terminal differentiation by formation of a calcified matrix. The identification of tissue-specific progenitor cells in auricular cartilage, which can be expanded to high numbers without loss of cartilage phenotype, has great prospects for cartilage regeneration of larger constructs. This study investigates the largely unexplored potential of auricular progenitor cells for cartilage tissue engineering in 3D hydrogels

    Novel methodologies and technologies for the multiscale and multimodal study of Autism Spectrum Disorders (ASDs)

    Get PDF
    The aim of this PhD thesis was the development of novel bioengineering tools and methodologies that provide a support in the study of ASDs. ASDs are very heterogeneous disturbs and their abnormalities are present both at local and global level. For this reason a multimodal and multiscale approach was followed. The analysis of microstructure was executed on single Purkinje neurons in culture and on organotypic slices extracted from cerebella of GFP wild-type mice and animal models of ASDs. A methodology for the non-invasive imaging of neurons during their growth was set up and a software called NEMO (NEuron MOrphological analysis tool) for the automatic analysis of morphology and connectivity was developed. Microstructure properties can be inferred also in vivo through the quite recent technique of Diffusion Tensor Imaging (DTI). DTI studies in ASDs are based on the hypothesis that the disorder involves aberrant brain connectivity and disruption of white matter tracts between regions implicated in social functioning. In this study DTI was used to investigate structural abnormalities in the white matter structure of young children with ASDs. Moreover the neurostructural bases of echolalia were investigated. The functionality of the brain was analyzed through Functional Magnetic Resonance Imaging (fMRI) using a novel task based on face processing of human, android and robotic faces. A case-control study was performed in order to study how the face processing network is altered in ASDs and how robots are differently processed in ASDs and control groups. Measurements characterizing physiology and behavior of ASD children were also collected using an innovative platform called FACE-T (FACE-Therapy). FACE-T consists of a specially equipped room in which the child, wearing unobtrusive devices for recording physiological and behavioral data as well as gaze information, can interact with an android (FACE, Facial Automaton for Conveying Emotions) and a therapist. The focus was on ECG, as from the analysis of power spectrum density of ECG it is possible to extract features related to the autonomic nervous system that is correlated with brain functionality. These studies give new insights in the study of ASDs exploring aspects not yet addressed. Moreover the methodologies and tools developed could help in the objective characterization of ASD subjects and in the definition of a personalized therapeutic protocol for each child

    Advances on Mechanics, Design Engineering and Manufacturing III

    Get PDF
    This open access book gathers contributions presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2020), held as a web conference on June 2–4, 2020. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is organized into four main parts, reflecting the focus and primary themes of the conference. The contributions presented here not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of the methods discussed and future interdisciplinary collaborations

    Infective/inflammatory disorders

    Get PDF

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text
    • …
    corecore