33,657 research outputs found

    Effect of a reduction in glomerular filtration rate after nephrectomy on arterial stiffness and central hemodynamics: rationale and design of the EARNEST study

    Get PDF
    Background: There is strong evidence of an association between chronic kidney disease (CKD) and cardiovascular disease. To date, however, proof that a reduction in glomerular filtration rate (GFR) is a causative factor in cardiovascular disease is lacking. Kidney donors comprise a highly screened population without risk factors such as diabetes and inflammation, which invariably confound the association between CKD and cardiovascular disease. There is strong evidence that increased arterial stiffness and left ventricular hypertrophy and fibrosis, rather than atherosclerotic disease, mediate the adverse cardiovascular effects of CKD. The expanding practice of live kidney donation provides a unique opportunity to study the cardiovascular effects of an isolated reduction in GFR in a prospective fashion. At the same time, the proposed study will address ongoing safety concerns that persist because most longitudinal outcome studies have been undertaken at single centers and compared donor cohorts with an inappropriately selected control group.<p></p> Hypotheses: The reduction in GFR accompanying uninephrectomy causes (1) a pressure-independent increase in aortic stiffness (aortic pulse wave velocity) and (2) an increase in peripheral and central blood pressure.<p></p> Methods: This is a prospective, multicenter, longitudinal, parallel group study of 440 living kidney donors and 440 healthy controls. All controls will be eligible for living kidney donation using current UK transplant criteria. Investigations will be performed at baseline and repeated at 12 months in the first instance. These include measurement of arterial stiffness using applanation tonometry to determine pulse wave velocity and pulse wave analysis, office blood pressure, 24-hour ambulatory blood pressure monitoring, and a series of biomarkers for cardiovascular and bone mineral disease.<p></p> Conclusions: These data will prove valuable by characterizing the direction of causality between cardiovascular and renal disease. This should help inform whether targeting reduced GFR alongside more traditional cardiovascular risk factors is warranted. In addition, this study will contribute important safety data on living kidney donors by providing a longitudinal assessment of well-validated surrogate markers of cardiovascular disease, namely, blood pressure and arterial stiffness. If any adverse effects are detected, these may be potentially reversed with the early introduction of targeted therapy. This should ensure that kidney donors do not come to long-term harm and thereby preserve the ongoing expansion of the living donor transplant program.<p></p&gt

    Efectos de la administración crónica de carvedilol sobre la variabilidad de la presión arterial y el daño de órgano blanco en ratas con desnervación sinoaórtica

    Get PDF
    Background: Increased blood pressure variability is a novel risk factor for the development of target organ injury both in hypertensive and normotensive subjects, so its reduction should be considered as a new therapeutic goal. Objective: The aim of this study was to evaluate the effect of long-term oral carvedilol treatment on blood pressure, blood pressure variability and target organ injury in the left ventricle and thoracic aorta in a model of blood pressure liability. Methods: Twelve male Wistar rats submitted to sinoaortic denervation were treated during 8 weeks with a single dose of carvedilol 30 mg/kg or vehicle. At the end of treatment, echocardiographic evaluation and blood pressure and short-term variability measurements were performed. Left ventricular and thoracic aortic weights were determined and histological samples were prepared from both tissues. Metalloproteinase MMP-2 and transforming growth factor β (TGF-β) were quantified in the left ventricle and thoracic aorta. Results: Carvedilol reduced systolic blood pressure and its variability in sinoaortic-denervated rats compared with the control group (126±5 vs. 142±11 mmHg, p<0.05; SD: 2.9±0.5 vs. 6.0±0.5 mmHg; p<0.05). A lower amount of connective tissue was found in carvedilol-treated animals. The expression of TGF-β decreased in both organs after carvedilol treatment. Conclusions: Chronic carvedilol treatment significantly reduces systolic blood pressure and its short-term variability in sinoaorticdenervated rats, decreasing the degree of left ventricular fibrosis.Fil: del Mauro, Julieta Sofía. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Santander Plantamura, Yanina Alejandra. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Bertera, Facundo Martin. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Carranza, Maria Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Donato, Pablo Martín. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiopatología Cardiovascular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gorzalczany, Susana Beatriz. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Gelpi, Ricardo Jorge. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiopatología Cardiovascular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Taira, Carlos Alberto. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Höcht, Christian. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentin

    Rhythmic dynamics and synchronization via dimensionality reduction : application to human gait

    Get PDF
    Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system

    Trigonometric Regressive Spectral Analysis Reliably Maps Dynamic Changes in Baroreflex Sensitivity and Autonomic Tone: The Effect of Gender and Age

    Get PDF
    BACKGROUND: The assessment of baroreflex sensitivity (BRS) has emerged as prognostic tool in cardiology. Although available computer-assisted methods, measuring spontaneous fluctuations of heart rate and blood pressure in the time and frequency domain are easily applicable, they do not allow for quantification of BRS during cardiovascular adaption processes. This, however, seems an essential criterion for clinical application. We evaluated a novel algorithm based on trigonometric regression regarding its ability to map dynamic changes in BRS and autonomic tone during cardiovascular provocation in relation to gender and age. METHODOLOGY/PRINCIPAL FINDINGS: We continuously recorded systemic arterial pressure, electrocardiogram and respiration in 23 young subjects (25+/-2 years) and 22 middle-aged subjects (56+/-4 years) during cardiovascular autonomic testing (metronomic breathing, Valsalva manoeuvre, head-up tilt). Baroreflex- and spectral analysis was performed using the algorithm of trigonometric regressive spectral analysis. There was an age-related decline in spontaneous BRS and high frequency oscillations of RR intervals. Changes in autonomic tone evoked by cardiovascular provocation were observed as shifts in the ratio of low to high frequency oscillations of RR intervals and blood pressure. Respiration at 0.1 Hz elicited an increase in BRS while head-up tilt and Valsalva manoeuvre resulted in a downregulation of BRS. The extent of autonomic adaption was in general more pronounced in young individuals and declined stronger with age in women than in men. CONCLUSIONS/SIGNIFICANCE: The trigonometric regressive spectral analysis reliably maps age- and gender-related differences in baroreflex- and autonomic function and is able to describe adaption processes of baroreceptor circuit during cardiovascular stimulation. Hence, this novel algorithm may be a useful screening tool to detect abnormalities in cardiovascular adaption processes even when resting values appear to be normal

    PHOTOPLETHYSMOGRAPHIC WAVEFORM ANALYSIS DURING LOWER BODY NEGATIVE PRESSURE SIMULATED HYPOVOLEMIA AS A TOOL TO DISTINGUISH REGIONAL DIFFERENCES IN MICROVASCULAR BLOOD FLOW REGULATION.

    Get PDF
    The purpose of this investigation was to explore modulation of the photoplethsymographic (PPG) waveform in the setting of simulated hypovolemia as a tool to distinguish regional differences in regulation of the microvasculature. The primary goal was to glean useful physiological and clinical information as it pertains to these regional differences in regulation of microvascular blood flow. This entailed examining the cardiovascular, autonomic nervous, and respiratory systems interplay in the functional hemodynamics of regulation of microvascular blood flow to both central (ear, forehead) and peripheral (finger) sites. We monitored ten healthy volunteers (both men and women age 24-37 ) non-invasively with central and peripheral photoplethysmographs and laser Doppler flowmeters during Lower Body Negative Pressure (LBNP). Waveform amplitude, width, and oscillatory changes were characterized using waveform analysis software (Chart, ADInstruments). Data were analyzed with the Wilcoxon Signed Ranks Test, paired t-tests, and linear regression. Finger PPG amplitude decreased by 34.6 ± 17.6% (p = 0.009) between baseline and the highest tolerated LBNP. In contrast, forehead amplitude changed by only 2.4 ± 16.0% (p=NS). Forehead and finger PPG width decreased by 48.4% and 32.7%, respectively. Linear regression analysis of the forehead and finger PPG waveform widths as functions of time generated slopes of -1.113 (R = -0.727) and -0.591 (R = -0.666), respectively. A 150% increase in amplitude density of the ear PPG waveform was noted within the range encompassing the respiratory frequency (0.19-0.3Hz) (p=0.021) attributable to changes in stroke volume. We also noted autonomic modulation of the ear PPG signal in a different frequency band (0.12 0.18 Hz). The data indicate that during a hypovolemic challenge, healthy volunteers had a relative sparing of central cutaneous blood flow when compared to a peripheral site as indicated by observable and quantifiable changes in the PPG waveform. These results are the first documentation of a local vasodilatation at the level of the terminal arterioles of the forehead that may be attributable to recently documented cholinergic mechanisms on the microvasculature

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus
    corecore