4,497 research outputs found

    Acta Cybernetica : Volume 25. Number 1.

    Get PDF

    Parametric uncertainty in system identification

    Get PDF

    Model validation of aeroelastic system for robust flutter prediction

    Get PDF
    The problems of uncertainty modeling and model validation of aeroelastic system are investigated. The parametric uncertainty is considered to denote the uncertainties in structure, and both parametric form and unmodeled dynamics are used to represent the influences and mechanism of uncertainties in unsteady aerodynamic forces. The Linear Fractional Transformation representation of the uncertain aeroelastic system is established to perform model validation and robust flutter analysis. A testing method for the existence of a validating model set in frequency-domain is developed, then the model validating sets are parameterized and the problem of searching the uncertainty magnitudes can be formulated as an optimization process. The influence of exogenous disturbances and noise, which are inevitable in actual testing environment and commonly unknown but energy bounded is considered, and consequently the conservatism of the uncertainty bounds is reduced. At last, for the uncertain aeroelastic system with the obtained uncertainty magnitudes, the robust flutter analysis based on structured singular value theory is performed to predict the robust stability boundary. The comparison of the results associated with two different uncertainty descriptions and the influences of disturbance and noise are discussed. Two numerical examples are presented and the results of the simulation demonstrate the validity of the developed method

    Parameters uncertainties and error propagation in modified atmosphere packaging modelling

    Get PDF
    IATE Axe 5 : Application intégrée de la connaissance, de l’information et des technologies permettant d’accroître la qualité et la sécurité des aliments Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699International audienceMathematical models are instrumental tools to predict gas (O2 and CO2) evolution in headspaces of Modified Atmosphere Packaging (MAP). Such models simplify the package design steps as they allow engineers to estimate the optimal values of packaging permeability for maintaining the quality and safety of the packed food. However, these models typically require specifying several input parameter values (such as maximal respiration rates) that are obtained from experimental data and are characterized by high uncertainties due to biological variation. Although treating and modelling this uncertainty is essential to ensure the robustness of designed MAPs, this subject has seldom been considered in the literature. In this work, we describe an optimisation system based on a MAP mathematical model that determines optimal permeabilities of packaging, given certain food parameters. To integrate uncertainties in the model while keeping the optimisation computational burden relatively low, we propose to use an approach based on interval analysis rather than the more classical probabilistic approach. The approach has two advantages: it makes a minimal amount of unverified assumption concerning uncertainties, and it requires only a few evaluations of the model. The results of these uncertainty studies are optimal values of permeabilities described by fuzzy sets. This approach was conducted on three case studies: chicory, mushrooms and blueberry. Sensitivity analysis on input parameters in the model MAP was also performed in order to point out that parameter influences are dependent on the considered fruit or vegetable. A comparison of the interval analysis methodology with the probabilistic one (known as Monte Carlo) was then performed and discussed

    Prognostics

    Get PDF
    Knowledge discovery, statistical learning, and more specifically an understanding of the system evolution in time when it undergoes undesirable fault conditions, are critical for an adequate implementation of successful prognostic systems. Prognosis may be understood as the generation of long-term predictions describing the evolution in time of a particular signal of interest or fault indicator, with the purpose of estimating the remaining useful life (RUL) of a failing component/subsystem. Predictions are made using a thorough understanding of the underlying processes and factor in the anticipated future usage

    On Novel Approaches to Model-Based Structural Health Monitoring

    Get PDF
    Structural health monitoring (SHM) strategies have classically fallen into two main categories of approach: model-driven and data-driven methods. The former utilises physics-based models and inverse techniques as a method for inferring the health state of a structure from changes to updated parameters; hence defined as inverse model-driven approaches. The other frames SHM within a statistical pattern recognition paradigm. These methods require no physical modelling, instead inferring relationships between data and health states directly. Although successes with both approaches have been made, they both suffer from significant drawbacks, namely parameter estimation and interpretation difficulties within the inverse model-driven framework, and a lack of available full-system damage state data for data-driven techniques. Consequently, this thesis seeks to outline and develop a framework for an alternative category of approach; forward model-driven SHM. This class of strategies utilise calibrated physics-based models, in a forward manner, to generate health state data (i.e. the undamaged condition and damage states of interest) for training machine learning or pattern recognition technologies. As a result the framework seeks to provide potential solutions to these issues by removing the need for making health decisions from updated parameters and providing a mechanism for obtaining health state data. In light of this objective, a framework for forward model-driven SHM is established, highlighting key challenges and technologies that are required for realising this category of approach. The framework is constructed from two main components: generating physics-based models that accurately predict outputs under various damage scenarios, and machine learning methods used to infer decision bounds. This thesis deals with the former, developing technologies and strategies for producing statistically representative predictions from physics-based models. Specifically this work seeks to define validation within this context and propose a validation strategy, develop technologies that infer uncertainties from various sources, including model discrepancy, and offer a solution to the issue of validating full-system predictions when data is not available at this level. The first section defines validation within a forward model-driven context, offering a strategy of hypothesis testing, statistical distance metrics, visualisation tools, such as the witness function, and deterministic metrics. The statistical distances field is shown to provide a wealth of potential validation metrics that consider whole probability distributions. Additionally, existing validation metrics can be categorised within this fields terminology, providing greater insight. In the second part of this study emulator technologies, specifically Gaussian Process (GP) methods, are discussed. Practical implementation considerations are examined, including the establishment of validation and diagnostic techniques. Various GP extensions are outlined, with particular focus on technologies for dealing with large data sets and their applicability as emulators. Utilising these technologies two techniques for calibrating models, whilst accounting for and inferring model discrepancies, are demonstrated: Bayesian Calibration and Bias Correction (BCBC) and Bayesian History Matching (BHM). Both methods were applied to representative building structures in order to demonstrate their effectiveness within a forward model-driven SHM strategy. Sequential design heuristics were developed for BHM along with an importance sampling based technique for inferring the functional model discrepancy uncertainties. The third body of work proposes a multi-level uncertainty integration strategy by developing a subfunction discrepancy approach. This technique seeks to construct a methodology for producing valid full-system predictions through a combination of validated sub-system models where uncertainties and model discrepancy have been quantified. This procedure is demonstrated on a numerical shear structure where it is shown to be effective. Finally, conclusions about the aforementioned technologies are provided. In addition, a review of the future directions for forward model-driven SHM are outlined with the hope that this category receives wider investigation within the SHM community

    REDS: Random Ensemble Deep Spatial prediction

    Full text link
    There has been a great deal of recent interest in the development of spatial prediction algorithms for very large datasets and/or prediction domains. These methods have primarily been developed in the spatial statistics community, but there has been growing interest in the machine learning community for such methods, primarily driven by the success of deep Gaussian process regression approaches and deep convolutional neural networks. These methods are often computationally expensive to train and implement and consequently, there has been a resurgence of interest in random projections and deep learning models based on random weights -- so called reservoir computing methods. Here, we combine several of these ideas to develop the Random Ensemble Deep Spatial (REDS) approach to predict spatial data. The procedure uses random Fourier features as inputs to an extreme learning machine (a deep neural model with random weights), and with calibrated ensembles of outputs from this model based on different random weights, it provides a simple uncertainty quantification. The REDS method is demonstrated on simulated data and on a classic large satellite data set

    A Bayesian approach to robust identification: application to fault detection

    Get PDF
    In the Control Engineering field, the so-called Robust Identification techniques deal with the problem of obtaining not only a nominal model of the plant, but also an estimate of the uncertainty associated to the nominal model. Such model of uncertainty is typically characterized as a region in the parameter space or as an uncertainty band around the frequency response of the nominal model. Uncertainty models have been widely used in the design of robust controllers and, recently, their use in model-based fault detection procedures is increasing. In this later case, consistency between new measurements and the uncertainty region is checked. When an inconsistency is found, the existence of a fault is decided. There exist two main approaches to the modeling of model uncertainty: the deterministic/worst case methods and the stochastic/probabilistic methods. At present, there are a number of different methods, e.g., model error modeling, set-membership identification and non-stationary stochastic embedding. In this dissertation we summarize the main procedures and illustrate their results by means of several examples of the literature. As contribution we propose a Bayesian methodology to solve the robust identification problem. The approach is highly unifying since many robust identification techniques can be interpreted as particular cases of the Bayesian framework. Also, the methodology can deal with non-linear structures such as the ones derived from the use of observers. The obtained Bayesian uncertainty models are used to detect faults in a quadruple-tank process and in a three-bladed wind turbine
    • …
    corecore